R (--n) (n--R-n)

Copies the top of the return stack onto the top of the data stack. As this name has been superseded
by R@, we do not recommend R.

Standards; FIG, R@ in'79 and '83.
Rel ated Wrds: >R R> R@

Rt ( -- addr ) "r sharp"
R# isa USER-variable that is only applicable in the BLOCK environment.

After the source file SCRED has been loaded, it is used to store the current cursor position (relative
to the start of the BLOCK) in the supplied, FIG-like line editor.

Rt @C L/ ( leaves |line# cursor is on)

Rel ated Words: LOAD BLOCK Used by nmany words in line editor and
SCRED.

R> (--n) (n--R-) "r fron

Takes avalue N off of the return stack and pushes it onto the data stack. WARNING Only remove
thing from the return stack that you put there with >R . Otherwise the subroutine return mechanism
will fail. The return stack is ahandy place to temporarily store values.

UNDERL+ ( a b -- a+tl b))
> ( save B) 1+ r>;

Rel at ed Words: >R R@ RDROP
RO ( -- addr ) "r zero"

USER variable containing the initial value for the return stack pointer. Thisis used internally by
JForth System Manager

Rel at ed Wrds: RP!

R@ ( -- n) (n--R-n) "r fetch"
Copy top of return stack onto top of stack .

Standards:; '83 and '79 . FIG uses R
EXAMPLE ( -- ) 5 >R R@( will be 5) RDROP ;

Rel ated Words: >R R> R
RANDOM ( -- rnd )

Generate a 16 bit pseudo-random number using the linear congruential method. Thisisin
JU:RANDOM. The sequence is based on the variable RAND-SEED.

Rel at ed Wrds: CHOOSE

RANGEOF ( value low high -- value | )

Executes the following code up to an ENDOF, and drops the value, if the value falls within the given
range. Therangeincludes LOW and HIGH. See CASE.

RAVEXPECTECHO ( -- var-addr )
See the chapter on CLONE.

GL - 86 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~



ROROP ( --) (n--R-) "r drop"

Drop top item N off the return stack. Only drop things you put there or the subroutine mechanism
will fail.

EXAMPLE ( -- ) 5 >R RDROP ; ( won't crash)
Rel at ed Wbrds: DROP XRDROP >R R> R@

READLI NE "read |ine"

(file-pointer var-addr addr maxlen -- addr #read | addr -1 if EOF )
file-pointer specifies the file to read.
var-addr holds the address of the virtual-buffer.
addr = the place in nenory to place the data
max|l en = maxi num # characters to read
READLINE is used to read the next line of afile into memory, stopping at the EOL character, or if

the memory limit is reached. The memory is read through a 1K sequential virtual-buffer that has
been allocated via OPENFV . See OPENFV .

The memory address is passed through. In addition, if not at end-of-file, the number of characters
that were actually read isreturned. Otherwise a-1isreturned. Note that an empty line will return O,
avalid line-length.

Virtual memory areas allocated for reading should be closed via CLOSEFVREAD .

See chapter on File I/O for more information.
NEXTLINE ( -- flag , read and display next line)
MY-FI LE @ MY-BUFFER PAD 1000 READ-LINE
( -- addr n1) dup 0>
I F TYPE TRUE
ELSE 2DROP FALSE
THEN ;

Rel ated Words: OPENFV LI NESFI LLVY CLOSEFVREAD FREAD

RECURSE ( -- )

Callsword currently being defined. Recursion is powerful tool but must be used with caution. The
rules for recursion are:

1) Do NOT use global variables because they will be changed by recursive calls. Use Local
Variables instead.

2) Provide away to stop recursion. Excessively deep recursion will overflow the return stack.

Here is an example of using recursion to calculate N factorial. N Factorial is defined as:
NF(N-L)*(N2)....*1
We can defineit recursively as:
FACT(N) N * FACT(N1)
FACT(1) 1
Here isthe Forth code. If thisisthefirst time you have used recursion, it will seem alittle mind
bending. L1SP programmers do this stuff al the time.
FACT ( N-- Nfactorial )
dup 1 >
I F
dup 1- recurse *

GL - 87 Glossary

"#$%& () 4+ - . 09:; <=>?2@AZ[\] "~ _az{|} ~



THEN

4 FACT . \ should print 24
RECURSI VE ( -- )

Thisisnot in the dictionary because it is so easy to define. When aword is being defined, it is
SMUDGED so that if the compilation failsit can't be called. By calling UNSMUDGE, we can alow
aword to call itself. Compare this example to the example under RECURSE.

RECURSI VE ( -- ) unsnudge ; immediate

FACT ( N-- Nfactorial )
RECURSI VE \ nake this word recursive
dup 1 >
| F

dup 1- FACT * \ calls itself!
THEN

REDEF? ( -- addr )

This user-variable is scanned by (CREATE) . If aForth word is redefined a message will be printed
if thisvariableif TRUE.
REDEF? OFF
: FOO ;
FQOO ; ( NO nessage!)

REPEAT ( -- )

Used to terminate aBEGIN ... WHILE ... REPEAT conditional construct. Unconditionally branches
to code following BEGIN. See WHILE for example.

For advanced users: REPEAT is actually an IMMEDIATE word that has the following stack
diagram.

( addr-begin begin-flag waddr while-flag -- )

addr-begin = address following BEG N to branch to
begin-flag = shows BEG N started the | oop
waddr = address of OBRANCH of fset created by WH LE

whil e-flag = pairs checking signature for WH LE
Rel ated Words: BEG N WHILE UNTIL | F ELSE THEN DO LOCP

RETURN ( -- )

RETURN causes an immediate exit from the the current colon definition, even from within nested
DO LOOPs. Likethe other control structures, IF ELSE LOOP etc... , It has an immediate part and
aruntime part. RETURN figures out the LOOP nest level at compile time, then compilesthe
appropriate number of return stack itemsto drop. If used outside any LOOP structures, RETURN
compilesEXIT . The run time action is to exit the function when executed.
Run ti me:
Stack: ( -- )
Return stack: ( return-address |oop-paraneters... --R--)
Conpile tine
Stack: ( -- )
Return stack: ( --R-- )

Glossary GL - 88

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~



EXAMPLE ( -- ) 100
DO 100 O
DO | . ." about to return, bye" RETURN
" won't get here"
LOOP ." won't ever print this"
LOOP ." Also won't print this" ;
( different from LEAVE)

Rel ated Words: ?RETURN EXIT ?EXIT LEAVE

REVERTVOC  ( -- addr )

ROOT

RP!

RP@

REVERTVOC isa USER-variable that is examined by : "colon". If found true, it will, at the very
beginning of the definition, change the vocabulary that will be searched to the CURRENT
vocabulary. The default state of REVERTVOC is FALSE. REVERTVOC has been provided for
compatibility with older vocabulary systems.

Rel ated Wrds: : VOCABULARY DEFI NI TI ONS ORDER
(--)

ROOQT isthe root vocabulary of JForth. It will always be searched, even if the word ONLY was
used. See the section on Vocabulary for more information.

Standard: '83 experimental proposal.
Rel at ed Words: VOCABULARY ORDER VOCS

(abc--bca)

Rotates the third item to the top of the stack.
11 22 33 ROT . ( prints 11 )

Rel ated Wrds: SWAP DUP OVER PI CK >R R>

r p store

RP! has two different meanings, based on the standard you are using.

Standards: FIG and 79 (JForth default) ...

()

Initializes the return stack pointer to the address contained in RO. Used in COLD and QUIT .
'83 (available from JU:MULTISTANDARD file)

(addr --)

Sets the return stack pointer to the addr on the data stack.

Rel ated Words: RO COLD QUIT

( -- addr ) "r p fetch"
RP@ pushes the return stack pointer address on top of the stack .

RPI CK (n--rval-n)

GL -

Thisisthe return stack equivalent of PICK. RPICK usesthe value N on the stack to copy the
contents of cell number N out from the return stack and push the value on top of the stack . Thisis
the only way to access items deep down on the return stack . Thisis zero based so a0 RPICK is

89 Glossary

#$%& () *+' - .109:;<=>2@AZ[\] " _az{|} ~



equivalent to an R@ . RPICK isvery fast and efficient, compared to using multiple callsto R>.

EXAMPLE ( -- )
5>R6>R7>R2RPICK. ( 5) 3 XRDROP ;

S>D (n--d) "s to d* "single to double"

S->D sign extends a 32 bit value N into a 64 bit double number D . This meansthe MSB of N is
duplicated through the upper half of D .

-23 S>DD. ( prints -23)
Rel ated Wrds: W>S B->S

SO ( -- addr ) "s zero"
S0 isauser variable containing the initial value of the stack pointer.

Rel at ed Wrds: SP@ OSP DEPTH RO

SAVE- FORTH  ( <fil enane> -- )
Save the current JForth dictionary in afile that can be executed later.
Thisyields two practical usesin the JForth development cycle:

Useful utilities and in general, any program may be saved in compiled form, and therefore almost
instantly brought up . Thiswill prove valuable, as you can save a compiled image with just the
routines you've tailored for devel oping and debugging your application.

SAVE-FORTH isavital part of the mechanism for expanding dictionary size. Asyour program
grows in size, you may receive the "insufficient dictionary available” message. The following
procedure lists the steps for increasing your JForth image size:

1) Set the #K variable...it tells SAVE-FORTH how large an image to save. In our example, we
simply increment #K by 20 with +! ...
20 #K +!

Our new dictionary will be 20 X 1K (1K=1024) or 20,480 bytes larger. Note: you can also
place the absolute value for sizein #K ... if it contained 100 , we could type:

120 #K !
This would have the same result.
2) Save the image to the disk, using your own filename:
SAVE- FORTH MYFORTH
NOTE: if #K holds 120, you will need dightly more than 120K of disk area (about 5% more).
3) Exit JForth, returning to the CLI with:
BYE

4) From the CL1, run the image you just created with:;
RUN MYFORTH

JForth will once again appear, (with the same words.) The only difference will be the larger
dictionary area. Of course, you are using that much more Amiga memory now. Note: if AmigaDOS
says that you don't have enough memory to run your new image, try rebooting the system...this
recovers any fragmented memory.

Triviao By setting #K to less than the current HERE (0O is a convenient number), SAVE-FORTH
will create aminimum-sized image, occupying aslittle disk space as possible. Thisimage however,
will have an available dictionary size lessthan 2K when later booted. This could be useful for
saving complete applications that you plan to use without adding much to their dictionary.

Glossary GL-90

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~



Standards: JForth unique
Rel at ed Words: #K #U MAP

SAVE- | MAGE ( <wordnane> <fil enane> [options] -- )

Save a cloned program to afile. See the chapter on CLONE.

SCAN ( addr count char -- addr' count' )
addr = an address
count = length to search
char = an ASCI| character
addr' = address where char was found OR end+1
count' = string length after matching char, 0 if not found

SCAN the string at ADDR (that is COUNT bytes long) for CHAR.

If found, return the address that matched and the REMAINING LENGTH of the string including the
CHAR. If not found, return the end-of-string+1 for ADDR' and aCOUNT' of O .

Standards: F83

" Atext string" COUNT ASCII r SCAN TYPE
( The above would print "ring" )

Rel at ed Words: SKI P PARSE PARSE- WORD COVPARE QUERY

SCAN-ALL-VOCS  ( -- )

SCAN-ALL-VOCSisaJForth Unique generalized function for accessing all the wordsin JForth.
Two deferred words are used. WHEN-VOC-SCANNED is executed when each vocabulary is
scanned, WHEN-SCANNED is executed when each word is scanned. By setting these words you
can write systems that will process al of the wordsin the dictionary. Please see the chapter on
Vocabularies for more info.

Rel at ed Words: WHEN- SCANNED WHEN- VOC- SCANNED SCAN- VOC SCAN- WORDS

SCAN-WORDS ~ ( -- )

SCAN-WORDS is a JForth Unique generalized function for accessing the words in the CONTEXT
vocabulary. The deferred word WHEN-SCANNED is executed when each word is scanned.

Rel ated Words: SCAN-VOC SCAN- ALL- VOCS WORDS CONTEXT

SCAN-VOC  ( -- )

SCAN-VOC isaJrForth Unique word used by SCAN-ALL-VOCS and SCAN-WORDS to search a
vocabulary. The deferred word WHEN-SCANNED is executed when each word is scanned.

Rel at ed Words: WHEN- SCANNED WHEN- VOC- SCANNED SCAN- VOC SCAN- WORDS

SEALMODULE  ( -- , <nodul enanme> )
See the chapter on MODULES.

SET-BIT ( n bit# -- n' )

Set aspecific bitin N. Bit Oisthe LSB.
0 4 SET-BIT . ( 16 )

Rel ated Wrds: CLR-BIT @I TS !BITS Bl T- SET? Bl T-CLR? OR AND XOR

GL - 91 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~



SHI FT ( nshift-count -- n' )

SHIFT n the number of bitsindicated by shift-count, shifting in azero as the new bit. If shift-count
is positive, the shift isto the left, otherwise it isto theright.

Useful, for example, when extracting or inserting bit fields.

Standards: 83 suggested

HEX 75 DUP OF AND . ( print 5)
-4 SH FT OF AND . ( print 7)

Rel at ed Words: ASH FT 2* 2/

SHOMWE ( -- , <wordnane> )
See the chapter on CLONE.

SIGN  ( sign dbl -- dbl )

If 'sign' is negative , add a minus sign to the output string. The double number 'dbl" is not affected.
Used in numeric conversion.
Standard: FIG. In'83(n--).
N>TEXT ( N -- addr count , signed nunber to text )
S->D SWAP OVER DABS
<# #S SIGN #> ;
-234 N>TEXT TYPE

Rel ated Words: HOLD # #S

SI ZEMEM  ( nenory-block -- allocated-size )

Given the address of a memory-block that had been acquired via ALLOCBLOCK, return the size of
the allocated block. See chapter on Memory Management.

MY- VEM @ S| ZEMEM ( -- size )
Rel ated Wrds: ALLOCBLOCK FREEBYTE FREEBYTEA FREEBLOCK

SKIP ( addr count char -- addr' count' )
addr = an address
count = length to search
char = an ASCI| character
addr' = address of 1st char that didn't match OR end+1
count' = string length after non-matching char

Oif entire string matches
Remove leading characters from a string.

Scan through the string at ADDR (that is COUNT bytes long) for CHAR, SKIPping leading
occurrences until anon-matching character isfound, or the end of the string. If a non-matching
character is found, return its address and the REMAINING LENGTH of the string. If the entire
string matches, return the end-of-string+1 for addr' and a count' of O .
Standards: F83

) Finally a word!" COUNT BL SKIP TYPE

( Don't type out |eading spaces!)

Rel at ed Words: SCAN PARSE PARSE- WORD COMPARE FI ND

Glossary GL-92

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~



SKI P- WORD

SKIP-WORD causes the next pass through WORD or FILEWORD to ignore the input stream,
accepting instead the existing text at HERE.

$CREATE ( $nane -- , create a word whose nane is on the
stack )
HERE $MOVE
SKI P- WORD CREATE
" MYDATA" $CREATE 234 ,
MYDATA @.

Rel ated Wrds: WORD LWORD FI LEWORD UNWORD $FOPEN

stow  ( -- )

SLOW revertsthe EMIT 1/O to aconventional single-character scheme. JForth default 1/0 technique
isline-buffered, see FAST. In SLOW mode, emit will output each character as soon asiit it is called.
This might be handy in debugging, continuously updated displays, etc.

Y ou may want to use FLUSHEMIT to force output in FAST mode instead of using SLOW.
Standard: JForth unique .
Rel ated Wrds: (EMT) (KEY) FAST EMT TYPE

SMUDGE  ( -- )

Mark the LATEST definition so that FIND will be unable to locate it. SMUDGE means to hide or
conceal the latest definition . SMUDGE isused in : and CODE and some other defining words to
make sure an incompl ete definition is not accidentally compiled or executed.

Hashing may cause unpredictable results with SMUDGE , see HASH.OFF.

Standards: FIG and '79 use SMUDGE but they TOGGL E the smudge state, JForth setsit. '83
systems use HIDE .
VARI ABLE BAD- MAKE
RI SKY-WORD ( -- flag , true if fails )
bad- make @;
MAKEWORD
CREATE SMJUDGE ( Make unFl NDabl e )
ri sky-word abort" Coul dn't MAKEWORD! "
UNSMUDGE ( Make FINDable if survived Rl SKY-WORD)
DOES> .

MAKEWORD OKWORD

OKWORD ( WIIl be found!)

TRUE BAD- MAKE | MAKEWORD BADWORD ( Creation fails)
BADWORD ( Won't be found!)

Rel at ed Words: UNSMUDGE REVEAL FI ND CODE :

SOURCE ( -- addr count )
Thisis a DEFERred word; by default it executes (SOURCE).

SOURCE is used by PARSE and PARSE-WORD to return the address and length of the available
input stream. (SOURCE) normally returnsthe TIB start and the contents of #TIB .

GL-93 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~



Rel ated Words: PARSE PARSE-WORD |S WHAT' S TIB #TI B QUERY WORD

SP! "s p store"
SP! has two different meanings, based on the standard you are using.
FIG and '79 (JForth default) ...
()
Initializes the data stack pointer to the address contained in SO. Used in COLD and ERROR .
'83 (available from JU:MULTISTANDARDSfile)
(addr --)
Sets the data stack pointer to the addr on the data stack. Use OSP in place of the old style SP! .
Rel ated Wrds: 0OSP SP@ S0 COLD

SP@ ( -- addr ) "s p fetch”

In atraditional Forth thisisthe address of TOS, the Top Of Stack. In JForth, however, TOS s
cached in register D7 inside the 68000. It has no "address'. SP@ , then, actually returns the address
of the SECOND item on the data stack in JForth.

Try to avoid using SP@ , use PICK and DEPTH if you can.
Rel at ed Wrds: RP@ DEPTH SO

SPACE ( -- )
Outputs an ASCI| space, 20 hex, to the current EMIT device.
Rel ated Words: SPACES EM T BL ASCI |

SPACES ( n --)
Prints N spaces on the standard EMIT device . Ascii space = 20 hex .
Rel at ed Wrds: SPACE EM T TYPE

SPAN ( -- addr )

SPAN isauser-variable that is set to the number of characterslast read in by EXPECT.
GET$ ( -- $string , input string)
PAD 1+ 120 EXPECT ( place characters at PAD+1)
SPAN @ PAD C ( update byte count at PAD)
PAD ;

Rel at ed Words: EXPECT QUERY

SPARE  ( -- addr )

Literally a spare USER variable for temporary use by any program .
FOPEN RAM TEMP SPARE ! ( handy pl ace)

Rel at ed Wrds: USER PAD >R
SPEAK  ( $string -- )

Trandlate string to phonemes and speak them. This uses the Amiga Narrator device. Make sure you
have the volume up. Check out JD:DEMO_SPEAK for examples.

I NCLUDE? SPEAK JU: SPEAK
Glossary GL-9%

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~



SPEAK.INIT ( -- , allocate 1/0O request bl ock )
" Greeting Earthlings!" SPEAK ( etc. )

" We cone in pea AAayaueahh!" SPEAK

SPEAK. TERM ( deal | ocat e when through

SQRT  ( N-- N*1/2) "square root"

Take the integer square root of N. Truncates answer. Y ou can scale N by 10,000 to get two
"decimal places" of accuracy.

| NCLUDE? SQRT JU:. SQRT
49 SORT . ( prints 7))

STACKSI ZE  ( -- var-addr )
See the chapter on CLONE.

STATE ( -- addr )
A user variable used by INTERPRET, reflecting the state of the interpreter.
The JForth interpreter may be in one of two states;

1) If STATE = zero, the interpreter isin INTERPRET Mode, executing words as they are parsed
from the input stream.

2) If STATE = non-zero, the interpreter isin COMPILE Mode, compiling words as they are parsed
from the input stream.
Standards: '79, '83, In FIG 0 means system is compiling .
NAMECF ( <word> -- nfa )
BL WORD FIND ( search dictionary )
IF >NAME STATE @ ( conpiling node? )
| F [COWI LE] LITERAL ( save in dictionary )
THEN
ELSE COUNT TYPE ." not found"
THEN
;| MVEDI ATE
NAMECF SWAP | D.
FOO NAMEOF SWAP ID. ; ( conpile SWAP's NFA as LITERAL )
FOO ( print "SWAP" )

Rel at ed Words: | NTERPRETI NG? COVPI LI NG? [ ]
STATS  ( -- )

See the chapter on CLONE.
SWAP (ab--ba)

Exchange top two stack items.

23 56 .S
SWAP . S
SWAP . S

TASK  ( -- )

TASK is an empty definition, below which resides the JForth Kernal (that part of JForth which can
not be VIEWed or re-generated by the programmer).

GL-95 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~



The source code for the JForth system is provided for al words above TASK, and the system can be
regenerated from this point from the JF: directory on the EXTRAS disk.

TEMPBUFF  ( -- addr )

TEMPBUFF is auser-variable, provided as a convenience for the programmer.

The programmer may alocate a virtua-buffer via OPENFV, and place the resultant addressin
TEMPBUFF.

Subsequently, the programmer may access file-virtual words that directly access TEMPBUFF,
providing simple stack diagrams (they don't require the buffer or a variable address parameter). The
only such word provided is TEMPF, ; the programmer may easily add more.

Note: TEMPBUFF usage is non-reentrant; you must save its contentsif you call another word that
will useit.

Standard: JForth unique
Rel ated Words: TEMPFILE TEMPF, OPENFV

TEMPF, (n--) "temp f comma”
This word writes the 32 hit value N to the file whose file-pointer is contained in TEMPFILE.

The write operation will be done through a virtual-buffer, opened with OPENFV, whose address is
contained in TEMPBUFF.

NOTE: TEMPF, usage is non-reentrant. Y ou must save the contents of TEMPFILE and
TEMPBUFF if you call another word that will also need it.

Standard: JForth unique
Rel ated Words: TEMPBUFF TEMPFILE OPENFV CLOSEFWRI TE

TEMPFILE ( -- addr )
TEMPFILE is auser-variable, provided as a convenience for the programmer.

The programmer may open afile via FOPEN or (FOPEN), and place the resultant file-pointer in
TEMPFILE.

Subsequently, the programmer may access file-operation words that directly access TEMPFILE,
providing simple stack diagrams (they don't require the file-pointer parameter). The only such word
provided is TEMPF, ; the programmer may easily add more.

NOTE: TEMPFILE usage is non-reentrant. Y ou must save its contentsif you call another word that
will useit.

Standard: JForth unique
Rel at ed Words: TEMPBUFF TEMPF,

TEXT=? ( addr1 count addr2 -- flag )
Compare two strings, each count bytes long, return a TRUE if they match, FALSE otherwise.
TEXT=?will perform a case-sensitive compare if the value of MCASE-SENSITIVE is non-zero;
otherwise the compare will be performed ignoring ASCII case (JForth default condition).
FROG=? ( $word --flag )
count 4 =
IF " frog" count swap text=?

ELSE drop fal se
THEN

Glossary GL - 96

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~



" bird" frog=? .
" Frog" frog=? .
Standard: JForth unique

Rel ated Words: MATCH? MCASE- SENSI Tl VE $= COVPARE PARSE SKI P SCAN

THEN ( -- )
Mark the end of an IF...THEN or an IF...ELSE... THEN conditional construct. See tutorial for more
examples.
EXAMPLE ( N -- )
5 =
IF ." It's a fivel "
ELSE ." Wiy didn't you type in five? "
THEN
cr ." Thank you." ( executed in any case ) ;

Rel ated Words: |F ELSE BEG N UNTI L WH LE REPEAT

TIB ( -- addr ) "terminal input buffer"

TIB returns the memory area used for receiving and storing the input stream that will be
INTERPRETed.

TIB 100 TYPE ( type this line plus previous stuff)
Rel ated Words: #TIB TI BO SOURCE

TI MER?

TIMER LI B
TI MER_NAVE

Internal operatorsto manage the TIMER library. See:LIBRARY.

TIMES ( n--)

Repeat the current command line N times. TIMES should be placed at the the end of the command
line. TIMES can only be used from the keyboard.

If the command-line isto repetitively operate on a number or set of numbers, they must exist on the
stack prior to the beginning of the command-line.

." Hellol " CR 3 tines

( This prints Hello! 3 tines.)

Rel ated Words: >IN DO LOCOP

TOGGLE ( addr mask -- )
Does an 8-bit EXCLUSIVE OR of byte at addr with the given mask. Result isleft in location addr.

Standards: FIG
" fred" COUNT OVER $ 20 TOGGLE TYPE
( change case of 'f' |, print Fred)

Rel at ed Wrds: XOR OR

TRACKING ( -- var-addr )
See the chapter on CLONE.

GL-97 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~



TRANSLATOR?

TRANSLATOR LI B
TRANSLATOR_NAME

Internal operators to manage the TRANSLATOR library. See:LIBRARY.
Standard: JForth internal .

TRUE ( -- true-flag)
A CONSTANT, equal to aboolean TRUE, or -1.
Standards: '83 (79 & FIG use avalue of 1)
Rel ated Words: FALSE

TUCK (ab--bab)

Duplicate and insert the top item on the stack below the second item. Thisisafast coded primitive,
the high-level logical equivalent is:

11 22 SWAP OVER . S

NEW DUMP ( addr cnt -- )
TUCK ( save count )
DUV . ." bytes dunped" ;

Rel at ed Wbrds: OVER SWAP DDUP

TYPE ( addr count -- )

TY PE outputs a character string to the EMIT device. The string starts at address ADDR and is
COUNT characterslong . TY PE will type a maximum number of characters determined by the
variable MAX-TY PE to prevent runaway output.

(If you accidentally TY PE something that messes up the screen font, enter a control 'O’ to fix it.)
" Hello" COUNT TYPE ( print Hello)

Rel ated Wrds: ID. EMT COUNT $TYPE ."

TYPEFI LE ( <filename> -- )

Output afile to the current output device. It issimilar to the AmigaDOS CLI 'TY PE' command in
that it can be paused and restarted from the keyboard. See ?PAUSE.

TYPEFI LE S: STARTUP- SEQUENCE ( see file )
Rel at ed Wrds: ?PAUSE FOPEN DOLI NES

Glossary GL - 98

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~



