ABORT (--)

Abort execution, return to outer interpreter. No message is displayed.
EXAMPLE (N --) 1,000,000 >
IF CR." Oh ny God! We're going TOO HHGH!'!" CR
ABORT (ABORT" woul d be better here)
(wWll QUT with no "OK" nessage)
THEN ;
ABORT isadeferred word that normally calls QUIT.

Rel at ed Words: ABORT" WARNING' .ERR QUI T

ABORT" (flag <message> --) "abort quote"

Display message and abort if the flag is true.
EXAMPLE (N --) 1,000,000 >
ABORT" Oh ny God, We're going TOO HHGH !'!I'™

Rel ated Words: ABORT QUIT ?ABORT" WARNI NG'

ABS (n--[n]) "absol ut e"

Calculate absolute value of N.
5 ABS .
-5 ABS. (both will print positive 5)

Rel at ed Words: DABS

ABS! (n absol ute-address --) "a b s store"

Store longword, word, or byte at an absolute 68000 absolute address. Equivalent to >REL ! but
faster. Useful for accessing hardware.

Rel ated Wrds: >ABS ! W C! ABS@ >REL

ABSW (n absol ute-address --) "abs wstore"
See ABS!

ABSC! (n absol ute-address --) "absc store”
See ABS!

ABS@ (absolute-address -- n) "a b s fetch"

ABSW@ (absolute-address--n) "ab sw fetch"
ABSC@ (absolute-address--n) "abscfetch”

Fetches longword, word, or byte from absolute address. Equivalent to >REL @ but faster. Useful
for accessing hardware.

Rel at ed Wrds: >ABS @ W@ C@ ABS!

ADST (absol ute-addr <structure> --)

Dump a structure whose absolute address is on the stack. Similar to DST which takes arelative
address. See DST .

File JU:.DUMP_STRUCT

GL - 30 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

AGAIN (--)

AGAIN at executiontime: marks the end of an infinite loop and branches back to its corresponding
BEGIN . Warning - an infinite loop won't stop until QUIT or RETURN is executed.

At compiletime : compilesa BRANCH into the dictionary. Resolves the loop entry point address
provided by BEGIN into a return branch offset and stores this offset in the dictionary. AGAIN and
BEGIN are paired. Error is detected by ?PAIRS if no match.

\ Warning this word will never stop!!!
ETERNITY BEG N ." Forever is a long tine!" AGAIN ;

Rel ated Wrds: BEG N BACK BRANCH DO UNTIL WH LE

ALIAS (<ol dnane> <newnane> --)

Create an alternative name for an existing word.
ALl AS 2DUP DDUP

ALIGN (--)

Word-align the dictionary pointer DP.

ALIGN is used at the end of any dictionary-allocation process that may have left HERE at an odd
address (the 68000 CPU and JForth both require the dictionary to be word aligned). ALIGN will
allocate abytein the dictionary if DP is odd; no effect if even.

Rel at ed Words: C CARRAY ALLOT EVEN- UP

ALLOCBLOCK (mentype size -- addr | false)

Allocates a memory area of the given size and type and returns the JForth-rel ative address of the
block. If the call for memory is not successful, aFALSE flag is returned.

The programmer will call ALLOCBLOCK to get an area of memory from the free memory list
maintained by AmigaDOS. JForth will remember the block and return it to AmigaDOS at BYE , if
the programmer does not.

This call isadirect interface to the Amiga EXEC function, AllocMem. It returns, however, a JForth
relative address, usable by al the JForth memory-reference words, such as @, C@, !, C!, etc.

The type parameter is referenced asin Amiga literature:

MEMF CH P - menory in |owest 512K, accessible by graphics
and sound har dwar e.

MEMF_FAST - menory above 512K, cannot be used by hardware
chi ps.

MEMF _PUBLIC - nmenory is to be used for different tasks or
interrupt code, and nmay apply to task control
bl ocks, messages, ports, etc.

MEMF_CLEAR - this paraneter nay be specified to clear the
menory upon all ocation; otherw se no
initialization is done.

These parameters may be combined (as long as they are not self-cancelling) by logically ORing

them together. For example, to indicate a global areathat may be used by the graphics chips, this
argument would be formed:

MEMF_CHI P MEMF_PUBLI C OR

ALLOCBLOCK also provides a range of operators that may be used to expand the functionality
of the memory block to act as stacks and buffers, and/or automatically be freed at QUIT .

GL - 31 Glossary

"#$%& () 4+ - . 09:; <=>?2@AZ[\] "~ _az{|} ~

The address returned from asuccessful call may subsequently be passed to FREEBL OCK to return
the memory to AmigaDOS when no longer needed.

Later versions of the Amiga may support 1024K of CHIP RAM.

Rel ated Words: FREEBLOCK MARKFREEBLOCK MEMF_CHI P MEMF_FAST
MEMF_PUBLI C MEM-_CLEAR FREEBYTE FREEBYTEA PUSH PCP - STACK +STACK
SI ZEMEM

ALLOCBLOCK? (nmemype size -- addr)

Identical to ALLOCBLOCK except thisword reports an error and aborts if memory could not be
allocated.

ALLOT (nunbytes --)
ALLOQOT allocates space in the dictionary by advancing the dictionary pointer DP by N bytes.

NOTE: if you ALLOT an odd number of bytes, the word ALIGN must be called before any
operations involving HERE are allowed to occur. It does not hurt to call ALIGN for even numbers
so use ALIGN liberally.

VARIABLE CHEAP-ARRAY 96 ALLOT (hasroom for 100 bytes)
Rel ated Words: DP HERE ALIGN

ALSO (voc --voc-stack-- voc voc)

Duplicate top of vocabulary stack. Used to make room for vocabulary in the current context. See
the section on vocabularies.

VOCABULARY MUSIC (create a new vocabul ary)
ALSO MJUSIC ORDER (al so search the MJSI C vocabul ary)
PREVI QUS (put things back the way they were)

AND (ab-- a&)
Doeslogical AND on each pair of corresponding bitsin A and B. Both bitsan A AND B must be 1
for bit in result to be 1. Useful for masking data.

HEX 7E53 FF AND . (print 53)
EVEN? (N-- flag, true if odd) 1 AND 0= ;

Rel at ed Wrds: OR XOR

ANEW (<name> --) "a new'

Forgets aword if already defined, no effect otherwise. Thisis often used at the beginning of afile
that is under development. Every time you recompile thefile, it will automatically forget the code
compiled thelast time. Thefilename is typically appended to the prefix TASK- .

\ Roll dice.
| NCLUDE? CHOGOSE JU: RANDOM
ANEW TASK- DI CE
ROLL.DICE (-- N)
6 CHOOSE 1+
Load the file by entering:
| NCLUDE DI CE
ROLL. DI CE .

Y ou can now edit thisfile, adding and changing code. Y ou can then include thisfile again and again
Glossary GL - 32

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

ANSI .

APTR

without getting multiple definitions of your code. Notice that the INCLUDE? is placed before the
ANEW. Thisis so CHOOSE won't be forgotten each time.

One thing to remember in using ANEW isthat if you load a bunch of files after loading DICE , then
reload DICE, you will lose the definitions from the other files. (The actua files will be unaffected.)
Thisisonly a problem when you are loading afile that stops because it contains aword that is
undefined. If you load the file that contains that undefined word, and then try to reload your file, the
first thing ANEW will do isforget the code you just loaded. The same word will show up missing
agin. You can while away many arainy day stuck in thisloop. Thething to doisto first FORGET
your task word. Consider the following sequence:

| NCLUDE MYFI LE

(assune nyfile crashes because of an undefined word)

(edit nyfile to do an I NCLUDE? for that word)

FORCGET TASK- MYFI LE

| NCLUDE MYFI LE

Unless you have more undefined words, you can continue just using INCLUDE MYFILE .
Rel ated Words: FORGET | F. FORGOTTEN

BACKWARDS (n --)

Move cursor N characters backwards. Thisis only one of a number of ANSI based "terminal
editing” commands that can be found in the file JU:ANSI.

(<name> --) "a pointer”
Define a 32 hit pointer member in astructure. See the section on Amiga'C' structures.
Filee JU.MEMBER

AREGS>ABS (--) "aregs toab s"

ARGS

Set the flag CONVERT-AREGS so that the very next Amiga CALL will convert parametersin
address registers to absolute before passing them to the Amiga. Thiswill save you having to call
>ABS excessively. See chapter on Calling Amiga Libraries.

(<library_lib> <routine_nane> --)

ARGS looks up arguments for an Amiga Library call and displaysthem. It provides aform of
automatic documentation. It looksin the FD files so there must be one for the library you specify.
Thelibrary need not be open.

ARGS GRAPHI CS_LI B DRAW

Wl display: Draw(rastPort, x,y)(Al, DO/ D1)

Thistells you that the graphics DRAW routine takes 3 arguments. Place the absolute address of a
RASTPORT on the stack followed by x and y values, then use CALL to invoke the routine. JForth
will automatically build the necessary code to stuff the 68000 registers and make the call.

Rel at ed Words: CALL DCALL

ARRAY (nuntells <name> --)

Creates aone dimensional array of length NUMCELLS of 32 bit values starting at the next available
dictionary location . Cellsareinitialized at compile timeto zero's. Theindex of thefirst array item
iszerojust likein'C'. Let's create an array with 20 items.

20 ARRAY MY- ARRAY
The array that was created has the following stack diagram:

GL-33 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

MY- ARRAY (i ndex -- addr)
Now lets store avalue in that array and then fetch it back.

731 12 MY-ARRAY ! (store 731 into cell 12 of MY- ARRAY)
0 MY-ARRAY @ (get first cell value)

(ODE, the object oriented dialect, has afancier type of array.)
Rel at ed Words: ALLOT ALLOCBLOCK OB. ARRAY ARRAYCF

ARRAYCF (n <structure> <nane> --)

Create an array of structures. For example:
10 ARRAYCF GADGET M- GADGETS

ASCI | (<char> -- ASCl|-val ue)

Converts the next character in the input stream to its ASCI| equivalent and puts the value on top of
the stack .

ASCIl A. (print 65)
ASH FT (n shift-count -- n-shifted)

Arithmetic shift N by SHIFT-COUNT. Shift left is shift-count is positive, right if negative.
Preserve the sign of N when shifting left by "dragging" the sign bit.

-20 -2 ASHHFT . (print -5)
The word SHIFT is similar but does not preserve sign.

ASM (-- , <wordnane>)

See the chapter on 68000 ASSEMBLY .

AUTOINIT (--)

Used for automatic initialization. 'Y ou write thisword. When JForth starts up, it searches the
dictionary for aword called AUTO.INIT and executes the first oneit finds. If you have an
initialization word that you would like called at startup, define aword called AUTO.INIT that calls
the previous AUTO.INIT then calls your word. Thiswill add onto achain of AUTO.INITS that
initialize many parts of JForth.

Code that allocates memory, opens files or libraries, initializes hardware, opens windows or builds
tablesis often called with AUTO.INIT . The matching terminate code is then called from
AUTO.TERM. Ingenera, DO NOT allocate memory open files or windows, etc. at compiletime.
Place this code in a colon definition and use INIT words.

Here is an example that shows how to automatically initialize a system, as well as automatically
clean up on BYE or if the code is forgotten.
(variable to avoid double init or term)
VARI ABLE | F-MW-INT
MY. STARTUP | F-MY-INT @0=
| F ALLCC. STUFF SET. STUFF

| F-MY-INIT ON
THEN
: AUTOINIT (-- , add ny.startup to init chain)
AUTO INIT (inportant!!)
MY. STARTUP

Glossary GL-34

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

MY.TERM IF-MY-INT @
| F CLEANUP. STUFF FREE. STUFF
| F-MY-INIT OFF
THEN

AUTO. TERM MY. TERM AUTO. TERM ; (cal l ed on BYE)
| F. FORGOTTEN MY. TERM (call MY.TERMif forgotten)

Rel at ed Words: AUTO TERM | F. FORGOTTEN

AUTO REQUEST ($body $posi $nega -- flag)

Put an Amiga Auto Requester on the screen. The body will be the main message. There will be two
possible responses, one positive and one negative. These might be"Yes' and "No", or "OK" and
"Cancel". When the user selects aresponse, a TRUE will be returned for a positive response,
otherwise FALSE.

File: JU:AUTO_REQUEST

AUTO TERM (--)

Thisword is called automatically when JForth exits using BYE. Y ou can define aword called
AUTO.TERM to cleanup your code on BYE. See AUTO.INIT for an example of it'suse.

B->S (byte -- sign-extended-byte-value) "b to s"

Sign extend a byte value to 32 hits.
HEX E7 B->S . HEX (prints FFFFFFE7)

Rel ated Wrds: W>S S->D

BACK (addr --)

BACK resolves the supplied address ADDR into a backward branch offset relative to HERE and
compiles the offset into the dictionary. It isused internally to compile UNTIL , AGAIN , etc.

BASE (-- addr)

BASE isauser variable that contains the current number base used for input and output number
conversion. HEX stores sixteen into BASE. DECIMAL storesten into BASE.
The JForth ok prompt will tell you about the current base:

ok - deci nal

ok(hex) - hexadeci nmal

ok(bin) - binary

ok(7) - in base 7
To display the base in decimal without destroying contents of BASE:

BASE? BASE @ DUP DECI MAL . BASE ! ;

DECI MAL 7 BASE !
6 1+. (print 10)

BEGN (--)

BEGIN marks the beginning of aloop. May be executed indefinitely as opposed to aDO loop
which islimited to a certain number of passes. Used with UNTIL , WHILE , REPEAT and AGAIN.

At compile time, BEGIN places the address of the next available dictionary location onto the stack
so UNTIL or REPEAT or AGAIN can compile areturn branch into their definition. Begin flagis

GL - 35 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

checked by UNTIL or REPEAT or AGAIN for abalanced loop.

compiletime (-- entry_point_address begin flag)
entry_point_address = |l ocation of first word of | oop.
begin flag is for conpiler security.

BEA N code (-- flag) UNTIL (quits when true)
BEG N code AGAIN
BEA N code (-- flag) WHI LE code-if-true REPEAT

JABBER BEG N ." Blah blah! " ?TERM NAL UNTIL ;

BEG N FLAG (-- n)

A constant |eft by the compile time part of BEGIN and used by the compile time part of UNTIL,
REPEAT, WHILE , or AGAIN .

BENCH (<forthword> --)

Benchmark aword, subtracting the overhead time found using BENCH.WITH. For example, many
words are benchmarked by calling them many times from aDO LOOP. To get an accurate
measurement of the word we need to subtract the time for an empty DO LOORP.

\ Measure speed of swap.

1, 000, 000 CONSTANT 1MEG
TDO 1MEG O DO LOCP ; (enpty loop)
TSWAP 1MEG 0 DO SWAP LOOP ;

BENCH. W TH TDO

23 45 BENCH TSWAP

Rel at ed Words: MEASURE BENCH W TH *
BENCH. WTH (<forthword> --)

Determine overhead time for benchmarking Forth words. See BENCH for example.
BINARY (--)

Sets user variable BASE to 2 for binary input and output numeric conversion. The Forth ok prompt
will be followed by a (bin) when BASE is set to binary.

Rel at ed Wrds: HEX DECI MAL BASE
Bl T- SET? (nbit# -- flag)

Test to seeif abitin N isequal to 1. The rightmost, least significant bit is bit number zero.
HEX 84 2 BIT-SET? (true)

Rel ated Words: SET-BI T AND OR XOR

BL (-- 32) "b I'" or "blank"

Constant equal to the ASCII value for ablank, or space.
SAYAGAI N BL WORD COUNT TYPE ;
SAYAGAIN hello (prints HELLO)

Rel at ed Words: WORD - FI ND

Glossary GL - 36

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

BLK (-- addr) “b [l k"

A user-variable, used only in the BLOCK environment to hold which 1024 byte section of a
SCREEN-FILE isbeing loaded and interpreted . BLK = 0 if not interpreting from a screen file.

WORD looks at BLK to determine the address of input data. QUIT setsBLK to 0.
Rel ated Words: LOAD FI LE >I N BLOCK

BLKERR (--) "bl ock error”
Thisword is the default contents for the DEFERed word, BLOCK.

It servesto print the text at HERE, followed by the message " ... BLOCK not initialized!", finally
executing QUIT.

This sequence warns that an attempt to execute BLOCK has been made without having loaded the
"JU:BLOCK" file. Thisfile definesthe support environment for BLOCK, defining the correct
handler to replace BLKERR in the vector of BLOCK.

Rel ated Words: BLOCK QUI T HERE

BLOCK (bl ock# -- buffer-addr)

Returns the address at the start of the 1024 byte buffer numbered BLOCK# . If this block is not
already loaded, it loads it from the file providing a system similar to virtual memory. Since JForth
normally uses regular ASCI| text files, you must load JU:BLOCK to use thisfacility.

Rel at ed Words: BUFFERADR BLK R# LQAD (FI RST) FLUSH | NCLUDE

BODY> (data-addr -- CFA) "body front

Convert the Body address (location of the data area) of a CREATE or CREATE/DOES> child to its
CFA or tick address (start of the executable code). See >BODY .

BODY > will only return a meaningful result if the passed-in address pointsto the data field of a
word created via CREATE, either directly or viaa CREATE/DOES> defining word. This does
NOT include the data location for other data-structures, such as VARIABLES, CONSTANTS, or
VALUEs.

[Note: In JForth Version 1.2 and earlier, BODY > was a noop, implying the body and the cfa were
the same!]

Rel ated Wrds: >BODY ' >NAME >LI NK

BOTH (--)

BOTH is an immediate compiler directive used just preceding a; at the end of a definition. Once
stated, the compiler will verify that the word being compiled may safely be used as an inline
definition.

If so, the word isinitialized such that the compiler will either compile an indirect cal toit, or move
it inline, depending on the value of the user-variable MAX-INLINE when it is being compiled.

If not, awarning message is issued, informing the operator that the word cannot be compiled inline,
and the word will be set as CALLED .

EXAMPLE (--) ROT OVER + BOTH ;
Rel ated Words: ; | NLINE MAX-1 NLI NE CFA,

BRANCH (--)

Used internally. BRANCH is compiled by certain conditional words to re-direct program flow at
run time. BRANCH adds a + or - offset to | P causing an unconditional jump.

GL - 37 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

Rel ated Words: ELSE AGAI N REPEAT

BSI N

(-- addr) "b s in" or "back space in"

Variable containing the value of the backspace character for input. Usually 08 hex is the default
value.

Useful for working with different terminals.

Rel at ed Wrds: BSQOUT

BSORT (#items --) "b sort"

Sort items using Batcher sort. To control what gets sorted, you must set the deferred word BSORT-
EXCH?. For more information, see the file JU:BSORT and the definition of BSORT-EXCH?

File: JU:BSORT, see dso JA:SORTMERGE
Rel at ed Words: BSORT- EXCH? 2SORT

BSORT- EXCH? (index-a index-b --) "b sort dash exchange question"

Called from BSORT. To use BSORT you must write aword that takes the index of two items, and
exchanges them if they are in the wrong order. Then set BSORT-EXCH?to call your word. The
items that are sorted can be anything including strings, integers, etc.

Y ou could, for example, have atable that contained pointers to entries in a mailing address data
base. To sort your table by zip code, write aword that accepts two indices into that table, compares
the two mailing addresses they point to, then swap the table entries if they are out of order. Then set
BSORT-EXCH?to call your word. When you then call BSORT, it will generate a pattern of indices
that will eventually result in your entire table being sorted in avery short time. Please see the demo
file JID:DEMO_GSORT for another example.
MY- EXCH? (itaib--)
2DUP QUT- OF- ORDER? (you rmnust supply this word)
| F EXCHANGE- THEM (you nust supply this word)
ELSE 2DRCP
THEN
" MY- EXCH? | S BSORT- EXCH?
25 BSORT

File: JU:BSORT
Rel at ed Words: BSORT 2SORT ADDR. EXCH?

BSOQUT (-- addr) "b s out"

User variable containing the character used to output a backspace. Default is 08 hex.
Useful for working with different terminals.

Rel ated Words: BSIN

BSR-CODE ~ (-- 6100 , in HEX)

Constant equal to the machine language 68000 opcode for BSR. BSR op code = 61X X hex where
XX = displacement. If XX =00 hex then the 16 bit word following BSR is used for a displacement
value. BSR = Branch Subroutine.

Used internally for 68000 machine coding.
Rel at ed Words: DI DCODE JSR- CODE RTS- CODE

Glossary GL - 38

"#$%& () 4+ - . 09:; <=>?2@AZ[\] "~ _az{|} ~

BYE (--)
BY E will exit JForth, returning the memory to the system.

Aslong as the programmer has utilized the JForth-supplied words for memory allocations, opening
& closing files, and opening libraries, JForth will return any of these resources which are till
pending.

NOTE: Only the standard predefined libraries are cleaned-up so the programmer should take care to
close any custom libraries defined with :LIBRARY .

Rel ated Words: AUTO TERM
BYTE (<nanme> --)

Define a byte wide structure member. See section on Amiga'C' Structures.
BYTE-SWAP (n -- ns)

Swaps the lower byte-pair of n.
HEX 1234 BYTE-SWAP . (print 3412)

Rel at ed Words: SWAP WORD- SWAP

GL -39 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

