! (naddr --) "store"
addr = even address

Store 32 bit value N at even address ADDR. Thisisthe primary word for storing datain memory.
Variables and other JForth data structures will always be word-aligned, ie. have an even address.
Code which may conceivably store 32-bit values to odd addresses should use ODD! . The addressis
assumed to be a JForth relative address, not a 68000 absolute address.

\ create and set a variable to '234

VARI ABLE VARL

234 VARL !

Rel ated Words: >REL >ABS ODDD! oD D) obbwW CMOVE FILL ODDW@
Dl w c +! @ Co W ..@ ..! TRAPS

I CSP (--) "store CS P"

Stores the current parameter stack address in the user variable CSP. Used with 2CSP to see if
parameter stack is balanced and there were no compilation errors. Used to check stack depth
between : and ;

Definition: : ICSP(--) SP@ CSP ! ;
Rel ated Words: CSP ?CSP

(<string> -- $addr) "quot e"

Returns the address of quote delimited string. The string will be stored as a count byte followed by
thetext. Note that a spaceisrequired after the first quote. If encountered while COMPILING,
guote compiles the string into the dictionary, returning that address when executed. |f encountered
while INTERPRETING, quote places the count at PAD, and the string at PAD+1, returning the PAD
address. Be aware that the PAD is used by many Forth words so strings generated when
INTERPRETING are considered temporary.

" Hell 0" COUNT TYPE
Rel ated Wrds: EM T COUNT TYPE 0"

(d1 -- d2)
"sharp" (fig '83) "nunmber" ('79)
Used to convert numbers to a character string. Divide D1 by current BASE, leaving remainder as

D2. Convert quotient to ASCII character, place character at addressin HLD (below PAD),
decrement HLD.

PHONE# (N -- , Print N as phone nunber)
S>D<# #### ASCI - HOD #S #>
(-- addr count) TYPE SPACE ;

Rel ated Words: #S <# #> HOLD PAD HLD COMVAS NO- COWAS S| GN

#> (dl1 -- text_addr count)

Drop D1, terminating numeric output conversion, leaving address and count of the string.

Standards; '79, '83, FIG.

Ub. (dl -- , print an unsigned doubl e nunber)
<# #S #> TYPE ;

#DIA TS (N -- #characters) "nunmber digits"

Calculates how many characters are needed to display a number N, including commas if enabled.
Glossary GL-3

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

Rel at ed Words: N>TEXT # NO COMVAS COMVAS

#K (-- addr) "nunber k"

Variable used by SAVE-FORTH to determine the size of a JForth image file. To increase the size of
your dictionary, set this variable, do a SAVE-FORTH, then run the resultant image.

\ Increase dictionary size by 20K
20 #K +!
SAVE- FORTH Myl nege

Rel ated Words: MAP SAVE- FORTH #U
#RELOCS (-- addr) "nunber rel ocs”

A user-variable, containing the number of long absolute rel ocations that have been compiled.
Internal.

Rel ated Wrds: PUSHRELOCC .| MAGE MNAP

#S (ud -- 00) "number s"

#S converts the unsigned double value on the stack into an ASCI| character string in memory.
String location starts one byte below PAD and works down. Produces only enough digitsto
represent the number. No leading zeros. Always produces at least one digit which may be zero. See
#and #> .

Rel ated Words: <# # #> SIGN HOLD HLD PAD #S

#TIB (-- addr) "nunber t i b"

A user-variable containing the TOTAL number of charactersin the TIB (terminal input buffer).
DUWP. TI B TIB #TIB @ TYPE ;

Rel ated Words: TIB 'TIB >IN QUERY
#U (-- addr) "nunmber u"

#U isavariable that contains the number of allowable user variables. If you run out of user
variables, increase #U and do a SAVE-FORTH. Works like #K .

Warning: once you make #U larger, you can't make it smaller. You must go to an earlier Forth to
get smaller user area.

#VOCS (-- addr) "nunber vocs"
A user-variable, containing the current number of vocabularies defined in the dictionary.

JForth allows a maximum of 32 vocabularies, two of which are defined in the minimum
development system. #V OCS helps you to keep track of what vocabularies are available and what
words can be used.

Rel at ed Wrds: #CHARS

$ (<hex-nunber> -- N) "dol l ar"

$isused to force the interpretation of the next word in the input stream as a hexadecimal number,
regardless of the current BASE. $isan IMMEDIATE word and, if found within a colon definition,
will also compile the value into the dictionary asaLITERAL.

decinmal 256 $ 80 - . (prints 128)
Rel at ed Words: HEX DECI MAL

GL-4 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

$" string quote See "

$, string commm
(char--) (<text>--in--) (--inline-- <text>)

Takes text from the input stream, delimited by char, compiles thistext into the next available
dictionary location.

$, isaprimitive used by the string literal words. It performsthe actual job of installing the text into
the dictionary.

$, isusually only called from higher-level words, suchas™ .

$- ($1 $2 -- flag) "string mnus"
Compare two strings aphabetically, return:
flag 0 if strings equal,
flag = +1 if $1 greater than $2,
flag = -1 if $2 greater than $1.

Rel at ed Wrds: $= COVWARE

$= ($1 $2 -- flag) "string equal s"
$= performs a case-sensitive compare between 2 strings and returnstrueif equal, else false.
For case-INsensitive string matches, see MATCH? and TEXT="?.

Rel at ed Wrds: $- COWARE NMATCH? TEXT=?

$>0 ($string --) "string to zero"

Convert anormal Forth string, with a count byte, to a'C' type NUL terminated string. The
conversion is donein place by shifting the characters down by one and placing aNUL, zero byte, at
theend. NUL terminated strings are used when passing strings to the Amiga libraries.

Rel at ed Words: OCOUNT >DOS

$APPEND (addr count dest-string --) "string append"
Thisword is used to append text to the string at destination-string address.
The count at address destination-string will be updated to reflect the increased string size.

It isthe responsibility of the calling program to insure that sufficient space exists above address
destination-string to accommodate the increased string size.

$DOLINES ($filename --)
Thisis eguivalent to DOLINES except it takes a filename on the stack. See DOLINES

$DOS ($dosconmmand --) "string dos”

Execute a string as a DOS command.
PW (-- , Print working directory.)
cd" $DCS ;

$FOPEN ($filenane -- file-pointer) "string f open”

Opens the file whose name is on the stack. $filename is the address of a count byte. A zerois
returned if the file could not be opened.

See FOPEN, OFOPEN and chapter on File I/O.
Glossary GL-5

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

OPENTEMP (-- file-pointer)
" ramtenp" $FOPEN DUP 0=
WARNI NG' RAM TEMP coul d not be opened!"

$LOGTO ($filename --)
Log all output to the file whose name is on the stack. See LOGTO

SMOVE ($addr-source addr-dest --) "string nove"

$MOV E moves a complete string, including the count byte.
VARI ABLE MYSTR 256 ALLOT
" Atext string" MYSTR $MOWVE (nove string to MYSTR)

$SIZE ($addr -- true-size) "string size"

$SIZE takes a string count-byte address and returns the number of bytes in the string plus the count
byte plus any padding required to word-align the end. Use COUNT if you want the actual number
of charactersin the string, without count-byte and padding.

$TYPE ($addr --) "string type"

$TYPE isashorthand for COUNT TYPE. It takes a string count-byte address and types out that
string.

(<word> -- cfa) "tick"

All wordsin the dictionary have a body containing executable 68000 code. Thisword returns that
address for any entry in the CONTEXT vocabulary.

If executed within a colon definition. this IMMEDIATE word will locate the cfa of the next word as
usual, then compileit as an address literal (ALITERAL) to be pushed to the stack at run-time.

\ Use ' for indirect execution.
: FOO." Hello world!'" CR ;
' FOO EXECUTE (does FOO)

">BODY (cfa -- pfa) "tick to body"
See>BODY

">NAME (cfa -- nfa) "tick to nane"
See>NAME

'"TIB (-- addr) "tick T1 B

Thisis auser-variable containing the JForth relative address of that users TIB area. The value of
this user-variableis placed on the stack by TIB .

"WORD (-- $addr) "tick word"
'WORD is a DEFERred word that returns the address that WORD will use to PLACE its output.
'WORD usually is set to execute HERE.

((<text> --) "l eft parenthesis”

Text between parentheses is considered to be acomment in Forth. The word (will eat text until the
closing) .

The opening (must be followed by a space. The comment is terminated with the next) character, or
GL-6 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

end-of-line. Note that a comment may NOT span more than one line.
(for humans only , put anything you want inside)

Rel ated Words: \ .IF

($") "parenthesis string quote"
Compiletime: (--) (<string> --in--) (--inline-- <string>)
Run time: (-- $addr)
($") isused ininline string words like " $" etc... ($") is compiled before using $, to place astring

inline. Atruntime, ($") will place the inline address of the string on the stack, and skip over the
inline string to continue executing the code after it.

$\ COWPI LE ($") ASCII \ &, . | MMVEDI ATE
FOO $\ A string with " in it!\ $TYPE ;

Rel ated Words: $" 0" (($"))

(($")) "doubl e parenthesis string quote"
(--%addr) (Saddrip--R-ip)

(($") isused ininline string words like (?ABORT") . (($")) is used within words that must parse
inlinestrings. It isamost the same as ($') but itisused at 1 level of calling lower. Seethe
STRINGS and STRING+ files for examples.
(?ABORT") (($")) SWAP
I F CR $TYPE QUIT
THEN DROP ;
ABORT" COWPI LE (?ABORT") ASCII " $, ;| MVEDI ATE

((CREATE)) (--) "paren paren create"

Thisword creates a dictionary header out of avalid JForth string residing at HERE. The dictionary
pointer DP is left pointing to the code-field-address cfa , with the name-field-address being left
SMUDGEd.

((CREATE)) isaprimitive used by all defining words.

(+LOOP) "paren plus |oop"
(inc--) (n1n2--LOOP-STACK-- nln2+inc)
n2 = i ndex approaching overfl ow
nl = correction value to recreate index for |
inc = increnment anount

(+LOOP) isthe run time action compiled by +LOOP . Used with DO .

(+LOOP) addsinc to n2. If n2 overflows, the LOOP is satisfied, and execution continues once the
loop indices have been dropped from the LOOP-STACK. If n2 does NOT overflow, return to the
address immediately following the corresponding DO code.

Rel ated Wrds: LOOP DO -LOOP +LOOP - DO LOOP- BACK LOOP- FORWARD
REPEAT DO _FLAG

(-LOOP) "paren ninus | oop"
(inc--) (nln2--LOOPSTACK--nln2-inc)
n2 = index approaching overfl ow
nl = correction value to recreate index for |

Glossary GL-7

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

inc = increnment anount
(-LOOP) is compiled by -LOOP . Used with DO .

(-LOOP) subtractsinc from n2. If n2 overflows, the LOOP is satisfied, and execution continues
once the loop indices have been dropped from the LOOP-STACK. If n2 does NOT overflow, return
to the address immediately following the corresponding DO code.

Rel at ed Wrds: LOOP DO -LOOP +LOOP - DO LOOP- BACK LOOP- FORWARD
REPEAT DO FLAG

.") "paren dot quote"
(--) ($addr --R-- addr)
$addr = string address
addr = address of next word to be interpreted
Thisword isarun time string-handler, used to print the string immediately following it's own
compiled location. It also modifies the program counter to jump around the string. It is compiled by
" to output the string when executed.
(.) (n--) "paren dot"
The number primitive executed for signed integer output in the current BASE, usually executed by .
(dot).
Definition: :(.) (n--) S>DD. ;
(;) (--) "paren sem -col on"
Thisword isa primitive used in closing any colon definition. It does the following.
1. Verify stack integrity (via ?CSP).
2. Conpiles the RTS opcode (necessary at the end of all
JForth definitions).
3 Reveals the nane-field to FIND, so that it nay accessed.
4. Termninates COWILE node, returning to | NTERPRET node.
(?DO) (limt index --) "paren question do"

(?DO) iscompiled by DO .
At run time, (?DO) check to see if the difference between the
index and Iimt is a positive, non-zero val ue.
- If so, it converts the index and limt to LOOP paraneters,
and pushes them on the LOOP- STACK.
- IF not, it drops both paranmeters, and junps past the
correspondi ng LOOP word.

(?LEAVE) (flag --) "paren question |eave"

(?LEAVE) iscompiled by ?LEAVE . Used for conditionally leaving a DO LOOP.
(?LEAVE), at run tine, will check a flag on the stack...
- If non-zero, it will drop the loop indices and junp past
the correspondi ng LOOP word.
- If zero, operation continues.

(?TERM NAL) (-- true-if-key-flag) "paren question termnal"

(PTERMINAL) istherun time codefor 7TERMINAL . 2TERMINAL isa deferred word normally
set to (PTERMINAL) . Inthe'83 standard thisisreferred to as (?KEY) .

GL-8 Glossary

"#$%& () 4+ - . 09:; <=>?2@AZ[\] "~ _az{|} ~

(ABORT) (--) "paren abort"
This s the default word which the DEFERred word ABORT executes. It calls QUIT.

(CFA,) (cfa --) "paren ¢ f a conmm"
Compile the appropriate code necessary to execute the word whose CFA is on the stack.

Once the compiler has decided to compile areference to an existing word, thisis the primitive which
figures out the particular manner of compilation which will be used, ie. INLINE, BSR, short or long
JSR.

Thisis the default contents of the DEFERred word CFA, and is the real workhorse of the compile
process.

(CFA,) determines whether the referenced CFA is of the INLINE type. If so, acopy of the body of
that definition is moved to the current DP, and its length is ALLOTed from the dictionary.

If (CFA,) determines the word is of the BOTH variety, it checks the value of MAX-INLINE, and if
the length of the word isless, it is compiled inline; otherwise referenced viaa call, as shown.

If the word must be referenced viaacall, the compiler will select the most efficient of 3 types of
subroutine calls to use.

If the called word isin the lowest 96K of the dictionary, the compiler will use the JUMP-
SUBROUTINE (JSR), INDEXED WITH DISPLACEMENT mode, either through register A4
(ORG) or A3 (+64K).

If the called word is not in the lower 96K of JForth, but iswithin 32K of the calling instruction, the
BRANCH-SUBROUTINE (BSR) mode is used.

Otherwise, the compiler will use the JUMP-SUBROUTINE (JSR), LONG ABSOLUTE mode.
This type of reference requires the JForth System Manager to maintain atable of al long absolute
references, that they may be relocated by the Amiga Loader at startup. Thistableisinvisibleto the
programmer.

(COMVAS) (-- addr) "paren commas"”

Thisisthe user variable that the number-formatting and printing routines check to see if they should
include commas in the output stream. If true, include commas.

Rel at ed Wrds: COWAS NO COMVAS

(CR (--) "paren carriage return"

(CR) isthe default contents of the DEFERed word CR . (CR) outputs a carriage return and aline
feed to the standard EMIT device.

CREATE) (<name> --) "paren create"
(p
(CREATE) isthe default contents for the DEFERed word :CREATE .

(CREATE) eats the next word in the input stream (parsed by the character value stored in
CREATECHAR), and from it, creates a new dictionary header, in the CURRENT vocabulary. The
nameis left smudged.

Rel at ed Words: : CREATE REDEF?
(DO (limt index --) "paren do"

(DO) performs similarly to (?DO), except that it performs no index/limit value checking. This
means that: 1. If the index and limit are equal, the LOOP will be executed once. 2. If theindex is
greater than the limit, it will LOOP until the index has been incremented and is subsequently equal
to the limit.

Glossary GL-9

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

NOTE: thisword, when used with LOOP, may be used for positive-growing LOOPS:

(EMT) (char --) "paren emt"

Thisisan EMIT function primitive that performs single-character 1/0 to the CONSOLE window. It
is executed by the deferred word EMIT when in the SLOW /O mode.

This word transfers characters to the screen in single-character fashion. The normal 1/0 technique
utilized in JForth is buffered, and thisword is only used, oddly enough, for KEY, to echo each
character typed to the user. Inthe SLOW I/O mode, it is the only EMIT primitive used.

(EMIT) will update OUT to reflect the current cursor column number.
NOTE: (EMIT) isNOT the default contents for the DEFERed word EMIT. See <FASTEMIT>.

(EXPECT) (addr nchars --) "paren expect”

Default word for EXPECT . See EXPECT . EXPECT is deferred so that it can be changed by the
user if needed.

(FI ND) "paren find"
(' $name Ifa-- cfatrue | $name false)

(FIND) is aprimitive used to locate the most recently defined occurrence of the given name. It will
start searching the dictionary at the Ifa passed on the stack.

If (FIND) locates the name, it returnsits CFA and a TRUE flag.
If the word is not found, (FIND) will return the original name and a FAL SE flag.

(FI RST) (-- addr) "paren first"

Thisisauser-variable that is only used in the BLOCK environment, and is initialized when the
source file JU:BLOCK is compiled.

After initialization, it contains the address of the first virtual buffer available under BLOCK.

(1p.) (nfa --) "paren i d dot"

Thisis the default contents of the DEFERred word ID. . It accepts the count byte address of a name-
field, and TY PEs the name on the standard EMIT device.

(I NTERPRET) (--) "paren interpret”

Run time code for INTERPRET . Thisis the default contents of the DEFERed word INTERPRET.
It isthe core of what is known in Forth as the "Outer Interpreter”. JForth does not have an "Inner
Interpreter since it compiles directly to 68000 machine code. (INTERPRET) iswhat interprets and
executes the commands that you enter at the keyboard. It is also used when compiling afile.

(INTERPRET) getsitsinput from the TIB. (INTERPRET) uses >IN to index into the TIB. When
>IN equals#TIB, or an error occurs, (INTERPRET) returns.

After INTERPRET) has parsed aword from the input stream, it searches first the CONTEXT, then
CURRENT vocabularies. If found, the resultant address will either be executed or compiled, based
on the STATE of the system, and (INTERPRET) will continue with the next word.

If not found, it will seeif the text can be successfully converted to a number (using the current
BASE) and if so, the resultant number is passed to LITERAL.

If a number cannot be derived, the system QUITS, displaying the offending text on the console.
Rel at ed Words: QUERY $I NTERPRET

GL-10 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

(KEY) (-- char) "paren key"

Wait for a character from the console. When received, return the character without echo. Flushes
any pending output. Default contents of DEFERred word KEY .

(LEAVE) "paren | eave"
(--) (n1n2--LOOP-STACK--) nlandn2 areloop indices
(LEAVE) iscompiled by LEAVE.

(LEAVE) forces immediate termination of a DO LOOP by dropping the loop indices, and jumping
past the corresponding L OOP word.

(LIMT) (-- addr) "bracket limt"

Thisisauser-variable that is only used in the BLOCK environment, and is initialized when the
source file JU:BLOCK is compiled.

After initialization, it contains the address of the END of the virtual buffer area available under
BLOCK.

(LONGCFA,) (cfa --) "paren long ¢ f a conma"
Thisisthe default contents for the DEFERred word LONGCFA, .
Thisword isused to compile aLONG ABSOLUTE JUMP-SUBROUTINE to acfain the dictionary.
(LONGCFA)) will automatically create an entry in the Long Relocations table for that reference.
(LOOP) paren | oop

(--) (nln2--LOOP-STACK--nln2+1)

n2 i ndex approachi ng overfl ow

nl correction value to recreate index for |
(LOOP) is compiled by LOOP.

(LOOP) incrementsn2 by 1. If n2 overflows, the LOOP is satisfied, and execution continues once
the loop indices have been dropped from the LOOP-STACK. If n2 does not overflow, return to the
address immediately following the corresponding DO code.

(NUMBER) ($string -- d true | false) "paren nunber"

Default contents of deferred word NUMBER . This converts the character string at $string to a
double number using the current BASE. If the conversion fails, false is returned.

(OF) "parenthesis of"

(case-vaue of-value -- case-value)

(OF) istheinternal run time function for OF used in CASE statements. It compares the top item on
the stack with a duplicate of the next thing on the stack. If they are equal it does not branch, else it
branches to the EL SE part of the OF ... EL SE structure.

(QUIT (--) "paren quit"
(QUIT) isused to terminate the currently running program and initialize the INTERPRETer to return
to the CONSOLE. When called, it has the following specific effects:
1. Coses all files that had MARKFCLOSE executed on them
2. Frees all menory bl ocks that had MARKFREEBLOCK executed on
t hem
3. Initializes the TIB from TI B0, #TIMES variable to 1.
4. ALIGNS the dictionary.

Glossary GL-11

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

5. Term nates COWI LE MODE, forcing | NTERPRET MODE.

6. Clears the USP stack.

7. Enters the QUERY | NTERPRET | oop.
This is normally executed by QUIT and performs many JForth-System initializations. |If you
desire to change the operation of QUIT, you should only supplement (QUIT), executing your code
then calling (QUIT) . When the JForth Kernal is TURNKEY ed, the action of (QUIT) MUST BE
REPLACED with the startup word for your turnkey operation.

(QUIT) isthe default contents of the DEFERed execution word, QUIT, and may remain so in any
version of your application that has not been distributed or released in any way. You are required
to replace this cfawith one of your own definitionin a TURNKEY ed application. See
TURNKEY and CLONE.

(SOURCE) (-- TIB #TIB) "paren source"

TIB = Terminal Input Buffer address
#TI B = Nunber of characters in TIB

This primitive returns the address and length of the TIB.

* (nln2 -- nl*n2) "times"

Multiply two 32 bit numbers.
\ Multiply 23 tine 7
237 * . (prints 161)

*/ (nmultiplier divisor -- n*nid) "times slash"
*/ calculates n times multiplier as adouble length value. Thisisuseful if the product would be
greater than 32 bits.

1, 000, 000, 000 234 567 */ (correct)
1, 000, 000, 000 234 * 567 / (overflows!)

*MOD (nl n2n3-- nd4nb) "times slash nod"
n5 = nl tines n2 and then divided by n3
nd = renai nder
*/MOD carries nl times n2 as adouble length value. This allows greater accuracy than would a

single length intermediate product. Then n3 is divided into n1 * n2 yielding n5 quotient and n4
remainder.

257 *MD (yields 3 1)

+ (n2 nl -- nl+n2) "plus"”
+ adds the top two values on the stack and places the result on the stack.
34 + . (prints 7
+! (naddr --) "plus store"

+! adds the value n to the value stored at address addr and |eaves the result at addr .
VARI ABLE VAR

10 VARL !
5 VARL +!
VARL ? (prints 15)
+- "pl us m nus"
(nl n2 -- nl) if n2>0o0r n2=0
(nl n2 ---nl1) if n2 <0
GL-12 Glossary

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

+- negates the sign of second stack value nl if top of stack value n2 is negative. Top value n2 isthen
dropped.

5-7 + . (prints -5)
+DOS (addr count --) "pl us dos"

Adds a string to the existing null-terminated string at DOSO . Thisis used when interfacing with
AmigaDOS.

" df0:c/" COUNT >DOS
" dir" COUNT +DCs
DOSO OCOUNT TYPE (print "dfO:c/dir")
+LOOP "plus | oop”
Compile time: (loop-addr do-flag --)
Runtime: (inc-va --) (indexlimit--R--index limit|)
Used in DO LOOPs where you want to increase by some number other than 1.

+L OOP checks for a do-flag at compile time and gives error if not found. +L OOP compiles
(+LOOP) At run time (+LOOP) increments index by inc-val and jumps back to loop body until
index crosses boundary between limit and limit-1 (overflows).

TDO+ 50 0 DO | . 10 +LOOP ;
TDO+ (print 0 10 20 30 40)

+SHFT (ab-- a<<b) "plus shift"

+SHIFT is afaster smaller routine than SHIFT that does only left shifts toward the MSB. O'sare
shifted into the L SB positions.

32 +SHFT . (prints 12)
Rel ated Words: SHI FT ASHI FT - SH FT U2*

+STACK (n var-addr --) "plus stack"

+STACK isused to PUSH itemsto a memory block (allocated via ALLOCBLOCK) being used as a
stack. It accepts as arguments, the value nl to push and the address var-addr of aVARIABLE or
USER-variable being used to hold the address of the allocated memory area.

If the VARIABLE or USER-variable contains 0, +STACK will alocate a 1024-byte block to be
used, sufficient for 256 cells, and place the address of the block in the storage location. It will then
push the value to the area.

If the VARIABLE or USER-variable contains other than zero, it is assumed by +STACK to be the
address of an existing memory block.

If the allocated stack areais full, and cannot accept the new element, +STACK will attempt to
increase the alocated sizein 1K increments.

Please see the chapter on Memory Management.
Rel ated Wirds: PUSH POP - STACK

Glossary GL-13

I " #$%& () *+" - ./ 09:; <=>?2@AZ[\] "~ _az{|} ~

