
Chapter 22
Anims and Animbrushes

by Martin Kees

(This facility was contributed by Martin Kees. We at Delta Research are very grateful to Martin for
his generosity. Martin also contributed code for the ARexx interface and assisted us greatly with beta
testing. Fred Fish disk 516 is all Martin's work. It includes a demo version of a CEL animation
program called XL which allows "onion-skin" drawing of Animations. It also includes a fascinating
puzzle called Enigma, a loom simulator for weaving design, and more. Watch for more great work
from this talented programmer.)

Introduction

Amiga programs use a standard IFF file format for exchanging graphic images. These include still
pictures, animations, and animbrushes. This allows you to move images between drawing programs
like DeluxePaint, presentation programs like Amiga Vision, image processing programs like Art
Department Professional, and other programs.

This toolbox provides routines that allow you to load animations and animbrushes, to play the
animations and access the frames of an animbrush. Using JForth will allow you to control and
coordinate an animated presentation at a very high level.

You are encouraged to study the anim source code files, modify, and expand the code to meet your
own needs. If you wish to do a lot with animation you should consider upgrading your AMIGA in
three ways:

1) Fast Memory Expansion

2) Chip Memory expansion to 1 meg with the Fatter Agnus

3) A big fast Hard Drive

All three will make your programming environment much more comfortable as well as decrease your
development time.

ANIM Formats

Before we explore the details of the ANIM routines, a little lecture about animation file formats will
help you to understand the different ANIM functions. There are many ways to achieve a particular
effect. Some are more memory efficient but slower, others are fast but conserve strained memory
resources. Some animation effects might best be done with just the JForth PICTURE routines.

There are two formats for storing the graphics information of an animation: an ANIMATION and an
ANIMBRUSH. An ANIMATION is the more complicated of the two. Its advantages are that it works
well with a double buffered display and it can be decompressed quickly. An ANIMBRUSH has the
advantage of ease of changing directions in playback at the cost of slightly slower decompression
times. Understanding the structure of the two formats can help you take advantage of their strong
points in your code.

Both formats contain an initial ILBM graphic of the first frame of the animation. The rest of the
animation is stored in DELTA chunks which are data chunks that just specify the changes that must be
made to a previous frame to generate a new frame. The DELTA chunks for the two formats are
interpreted differently for the two types of files.

Anims and Animbrushes 22 - 1

An ANIMATION DELTA chunk contains the absolute value of new bytes in any changed area of the
graphic. The DELTA chunks are setup so that each chunk modifies, not the current, but the previous
frame of the animation. When double buffering is used the hidden previous frame is modified by a
DELTA chunk to produce the next frame. Two extra DELTA chunks are added to the end of the
animation sequence that allow regeneration of the first two frames of the animation so that looping
effects can be performed.

An ANIMBRUSH DELTA chunk contains the exclusive OR of the old and new bytes in any changed
areas of the display. The DELTA chunks act on the current frame to produce the next frame so that
only one complete bitmap needs to be maintained. The last DELTA chunk modifies the last frame to
produce the first frame anew for looping. Since the data is an exclusive OR of two consecutive frames,
if the same delta is applied to the resulting frame, you get back the original. This makes it easy to
generate the frames in forward, backward, or ping pong order.

Compiling the ANIM Toolbox

The ANIM and PICTURE toolboxes have so many routines that they will not fit in the normal JForth
dictionary. Luckily it is a simple matter to expand the dictionary space. You can store this expanded
Forth wherever you have room for it. Let's assume you want to place it in a directory called TMP:.
You will need to substitute the name of your own directory.

Enter in the SHELL:

RUN COM:JFORTH

Enter in JFORTH:

200 #K ! \ allocate a 200K dictionary

SAVE-FORTH TMP:AnimForth

BYE

You now have a larger dictionary. Enter in the SHELL:

RUN TMP:AnimForth

Enter in JFORTH:

INCLUDE JANIM:LOAD_ANIM

After that compiles, let's save it so we don't have to recompile each time.

SAVE-FORTH TMP:AnimForth

From now on, you can just run that image and have everything ready for immediate use.

Tutorial 1 - Displaying an ANIM File

(Before proceeding with these tutorials, you should be familiar with the PICTURE IFF system
described in chapter 21.)

Before performing any JForth graphics operations, we must initialize the graphics system and open the
GRAPHICS and INTUITION library. To do this, enter:

GR.INIT

This tutorial assumes you have Deluxe Paint III as a source of an animation. If not use any ANIM-5
animation file that's available to you. Enter:

CD DPAINT:ANIM

DIR

You should see a file called CRY. If the above doesn't work, don't worry. You can use any ANIM for
this tutorial, assuming that it fits in your memory.

Animations use a special structure to keep track of all the cels in the ANIM as well as other graphical

22 - 2 Anims and Animbrushes

information. This structure is an extension to the PICTURE structure. Let's declare a structure for our
ANIM. Enter:

ANIMATION CRYANIM

Now we can load the animation from disk. This will use the IFF parser to scan the IFF file. The
deltas, which describe the differences between successive cels, will be loaded into memory. If the load
fails, it will return an error flag on the stack. We print that to make sure the load worked. In an
animation application, you should check this flag and respond appropriately. Enter:

CRYANIM ANIM.LOAD? CRY .

Since this is the first ANIM loaded, it will open a screen of the proper size and display the first frame.
To get back to the WorkBench screen, hold down the <LEFT-AMIGA> key and hit the 'N' key. To get
back to the image, hit <LEFT-AMIGA>+M.

Now back in JForth, enter:

ANIM_LOOP CRYANIM ANIM.PLAY

ANIM.PLAY will start displaying the animation in a loop until you click in the top left corner on the
hidden closebox or hit a key on the keyboard.

This Animation played as fast as the ANIM.PLAY routine could generate the next frame. This may be
too fast for your particular purpose. The defered word ANIM.DELAY is called within the playback
loop after each new frame is displayed. A simple way to slow down the playback would use the
Vertical Blank delay:

: WAIT20 (---)

 20 WAIT.FRAMES

;

' WAIT20 is ANIM.DELAY

Note that the delay word must have a stack diagram that neither expects nor leaves anything on the
stack.

To remove the animation from memory when finished. Enter:

CRYANIM ANIM.FREE

Tutorial 2 - ANIM Control and Disk Based ANIMS

Assume we have an animation called SPIN in the current directory. Let's do some explorations with it.
First let's create an animation structure for it and load it into memory. Enter:

ANIMATION MYSPIN

MYSPIN ANIM.LOAD? SPIN .

You should see the first frame appear. Now jump back to the JForth window using the keyboard
combination <LEFT-AMIGA><N>. (Hold down the left amiga key, then press 'N'. You can get back
to the Animation with <LEFT-AMIGA><M>.) Click in the JForth window and enter:

MYSPIN ANIM.STATS

You will see a list of information about the SPIN animation. The value displayed for CURRENT
FRAME will be zero based for the first loop of the animation and 1 based on subsequent loops. Enter:

MYSPIN ANIM.DISPLAY.NEXT? .

You should see the next frame of the animation appear. If you have HISTORY ON you can step
through the animation by pressing UP-ARROW RETURN combinations. Note that you will keep
looping through the frames of the animation after you have passed the "last" fame. If garbage appears
instead then the animation you are viewing does not have a two frame loop ending in the animation
file. Flip back to JForth and do ANIM.STATS at different points in the animation. You should note
that the sequence of frame numbers change between the first loop and the second. (Note that you can
also use ANIM.VIEW.NEXT? which is faster but can have some surprising behavior. See the

Anims and Animbrushes 22 - 3

references to PIC.VIEW for more explanation.)

The ANIMATION structure maintains two pictures. One is displayed and the other is hidden. You can
see them by:

MYSPIN ..@ an_hiding PIC.DISPLAY

MYSPIN ..@ an_displaying PIC.DISPLAY (restores the original)

Let's play the SPIN animation from disk. First free the memory version:

MYSPIN ANIM.FREE

This also closes the screen. Enter:

MYSPIN ANIM.DISK.LOAD? SPIN . ANIM_ONETIME MYSPIN ANIM.PLAY

MYSPIN ANIM.FREE

You will see the animation play through once and stop on the last frame. Depending on the speed of
your disk drive and the complexity of the animation results may range from good to poor (from floppy
drive). Loading and playing from disk might allow very long animations to be shown or at least
previewed.

Tutorial 3 - ANIMBRUSHES

AnimBrushes are like brushes in a paint program, except they have multiple frames or cels, like an
Animation. An example might be a bird flapping its wings. For this next tutorial you will need a still
picture and an AnimBrush. You could use the ones that came with JForth or you could make your
own. Let's assume you now have a background picture that we will call BACKG and an AnimBrush
brush that we will call BIRD. (It doesn't have to be a bird but we have to call it something!) It is best if
they are made with the same pallette, otherwise the AnimBrush colors may look odd.

Although AnimBrushes could be loaded into their own screen, they are more useful when drawn on
top of another image. Let's, therefore, load the background picture first so that it defines the screen.
The filenames used are for the images on the JTools disk. You may substitute your own files. Enter:

PICTURE BACKG \ declare a picture structure

“ jpics:mountains.pic” BACKG $PIC.LOAD? . \ load image

Now let's define the AnimBrush stucture and load an AnimBrush file:

ANIMBRUSH BIRD

“ jpics:bird.anbr” BIRD $ABR.LOAD?.

Since a picture was being displayed at the time of the load you saw no change in the display. If nothing
was being displayed then a screen would open and display the first frame of the animbrush. You may
want to drag the WorkBench screen down a bit so that you can see the graphics and the JForth window
at the same time.

An AnimBrush can be blitted onto the screen just like brushes, enter:

10 20 BIRD ABR.BLIT

The special thing about AnimBrushes is that you can advance to the next frame and blit that. Enter:

BIRD ABR.ADVANCE

10 20 BIRD ABR.BLIT

If you don't want the full rectangle of the brush, you can blit transparently. Let's move to new x,y
coordinates so we can see the difference. Enter:

BIRD ABR.ADVANCE

95 14 BIRD ABR.TRANS.BLIT \ note .TRANS.

Use the <UP-ARROW> key to reenter the two previous commands several times. Notice that the new
blits overlap the previous blits. Techniques to prevent this by saving the background and restoring are
described in the PICTURE tutorial. The same techniques can be used with AnimBrushes. Actually,

22 - 4 Anims and Animbrushes

almost any PIC. call can be used with AnimBrushes including wipes and other effects. Don't however,
use PIC.FREE or PIC.LOAD with AnimBrushes!

Now let's define some words that will help us further explore AnimBrushes. Enter:

: SHOW.BIRD (-- , display current frame of bird)

10 20 BIRD ABR.BLIT

;

: NEXT.BIRD (-- , show next cel of Bird)

BIRD ABR.ADVANCE

SHOW.BIRD

BIRD ABR.GET.FRAME . CR? \ print where we are now

;

ABR.GET.FRAME returns the frame, or cel, of the AnimBrush currently ready to blit. We can force
an AnimBrush to a particular frame using ABR.GOTO.FRAME. Enter:

0 BIRD ABR.GOTO.FRAME \ move to first frame

SHOW.BIRD \ show it

NEXT.BIRD \ show next frame

3 BIRD ABR.GOTO.FRAME

SHOW.BIRD

If you tell ABR.GOTO.FRAME to a frame beyond the end of your brush, it will just print a message to
that effect and do nothing. You can tell how many cels you have by reading it out of the AnimBrush
structure. Enter:

BIRD S@ ABR_CELS . \ print total number of cels

Let's now define a word that will continuously advance the AnimBrush. Enter:

: PLAY.BIRD (--)

BEGIN

NEXT.BIRD

6 WAIT.FRAMES \ wait 6 video frames, 6/60 seconds

?TERMINAL

UNTIL

;

PLAY.BIRD

Notice that the bird is advancing and that the numbers go up to the highest frame then start over again
at zero. Let's reverse the direction of play. Hit <RETURN> to stop PLAY.BIRD and enter:

BIRD ABR.REVERSE

PLAY.BIRD

If you would like the brush to PINGPONG, or go both directions, enter:

ABR_PINGPONG BIRD S! ABR_FLAGS

PLAY.BIRD

Notice the numbers go up to the maximum then back down to zero, etc. To get back to the normal
mode, enter:

ABR_LOOP BIRD S! ABR_FLAGS

PLAY.BIRD

When you're done using these images don't forget to enter:

BIRD ABR.FREE

BACKG PIC.FREE

To further explore this toolbox, look in the directory, JANIM:TESTS. It contains test programs that

Anims and Animbrushes 22 - 5

can also serve as simple examples. By studying these files, you will see how to create animbrushes
from two pictures using ABR.BUILD?. You can then append other pictures to the end using
ABR.APPEND.CEL?. You can also edit the internal structure of animbrushes using
ABR.DUP.CEL? , ABR.DELETE.CEL? and ABR.REPLACE.CEL?.

Animation Tips

If you need to edit an animation, you can convert it to an animbrush using ANIM>ANIMBRUSH?,
edit it, then convert it back using ANIMBRUSH>ANIM?.

In an application, you can bring the animation to the front using ScreenToFront(). The screen address
is stored in the variable SIFF-SCREEN so enter:

SIFF-SCREEN @ ScreenToFront()

ANIM Support Glossary

ANIM IFF tools

These words are used in reading ANIM-5 IFF files.

$ANIM.LOAD? ($filename animation --- error?)

Load animation for playback. The main load routine. IF an_flags set to ANIM_DISKMODE then a
disk mode load will occur.

$ANIM.DISK.LOAD? ($filename animation --- error?)

The ANIM_DISKMODE flag is set and $ANIM.LOAD is called. The animation will be kept on disk
and read as it is played. This is handy for very large ANIMs.

$ANIM.PREP? ($filename --- error?)

Setup of variables and animation filename previous to an $ANIM.SCAN? .

$ANIM.SAVE? ($filename animation -- error?)

Saves the animation to the file. You cannot save a DISKMODE animation with this word.

$ANIM.SCAN? ($filename --- error?)

Scans the anim file for delta and anim-header chunks.

ANIM.BLIT (x y animation --)

Animations contain two pictures that are needed to reconstruct the images using double buffers.
This word will blit the currently picture to the destination RastPort.

ANIM.DISK.HANDLER (size chkid --)

Reads DLTA chunks and collects the FSEEK and size data in lists to be able to access the chunk
from disk.

ANIM.DISK.LOAD? (animation <filename> -- error?)

For disk based loading with filename in the input stream. This cannot be used in a colon definition.
Use $ANIM.DISK.LOAD? instead.

ANIM.HANDLER (size chkid -- , handles ANIM specific chunks)

Reads DLTA chunks and allocates memory for them.

ANIM.LOAD? (animation <filename> -- error?)

For memory mode loading with filename in the input stream. This cannot be used in a colon

22 - 6 Anims and Animbrushes

definition. Use $ANIM.LOAD? instead.

ANIM.PARSER (size chkid -- , recursively parse ANIM)

Used by $ANIM.SCAN to collect info about ANHD and DLTA chunks present in the file.
Precollecting this data allows more efficient memory allocation for the ANIM file.

ANIM.READ.ANHD? (size --- error?)

Reads an Anim-Header chunk into ANIM-HEADER from current IFF file. Checks for correct size.

ANIM.SAVE? (animation <filename> -- error?)

This cannot be used in a colon definition. Use $ANIM.SAVE? instead.

Saves the animation to the filename from the input stream.

ANIMATION Words

These are used to display ANIMATIONs.

ANIM.ADVANCE? (animation -- error? , advance to next frame)

Calls ANIM.APPLYDELTA or ANIM.APPLYDISKDELTA as needed to generate the next frame.
The HIDDEN and DISPLAYING buffer pointers are then switched. Will loop around at end.

ANIM.APPLYDELTA (anim --)

Using the hidden pic buffer applies the current memory based delta. Then bumps the delta pointer
looping it to 1 if at the last delta. Does not swap the hidden and displayed buffer pointers or cause
the new data to be displayed.

ANIM.APPLYDISKDELTA? (anim -- error?)

Same as ANIM.APPLYDELTA but obtains the data from disk.

WARNING: to use this word you need to previously open the disk based file with
ANIM.DISK.OPEN. At the present time only ONE disk based anim can be open. Since the IFF
routines are used to read the data you also must not do an IFF read or write operation while the file is
open.

ANIM.CHECK (animation -- , abort if bad)

Looks for the correct value in the an_key field.

ANIM.DELAY (---)

A deferred word called by ANIM.PLAY between frames. It can be used to slow down the playback
or add syncronization effects.

ANIM.DISK.OPEN? (animation -- error?)

Opens the original file read by the ANIM.DISK.LOAD routine for disk based animations. If you
gave a directory relative filename at the original load, you must be in the same current directory to
reopen it.

ANIM.DISK.CLOSE (---)

Closes the file.

ANIM.DISPLAY.NEXT? (animation -- error?)

Calls ANIM.ADVANCE? to generate the next frame then displays it using PIC.DISPLAY. This is
slower then ANIM.VIEW.NEXT? but preserves the Intuition Screen order.

Anims and Animbrushes 22 - 7

ANIM.FREE (animation -- , free all parts of animation)

Releases all the allocated memory for the animation and clears the animation struct.

ANIM.GET.DEPTH (animation -- depth)

Returns the number of bit planes in the animation.

ANIM.LAST.FRAME? (animation --- flag)

Returns a TRUE flag if at the last frame of an animation. This is valid ONLY IF the animation
contains the typical two extra DELTA chunks for looping. Otherwise returns TRUE on the 3rd from
last frame. Problem if the anim has less than 3 frames.

ANIM.PLAY (loopflag animation ---)

Loopflags are ANIM_LOOP (TRUE) which plays the animation in a loop, or ANIM_ONETIME
(FALSE) which plays up to the "LAST" frame.

ANIM.STATS (animation ---)

Displays info about the current state of the animation.

ANIM.VIEW.NEXT? (animation -- error?)

Calls ANIM.ADVANCE? to generate the next frame then displays it using PIC.VIEW. This is
much faster then ANIM.DISPLAY.NEXT? but can cause some confusion because it overlays the
Intuition Screen display using low level code. See PIC.VIEW.

ANIMATION (<animname> ---)

Creates a structure in the dictionary for an animation.

ANIMBRUSH Words

Load and display AnimBrushes.

$ABR.LOAD? ($filename animbrush --- error?)

Since the first IFF load routine used opens a screen, you should load your backgroud picture first so
that the display mode can be set. After loading the default direction is set to ABR_FORWARD and
the mode flag is set to ABR_LOOP. See ABR.REVERSE.

$ABR.SAVE? ($filename animation -- error?)

Saves the animbrush to the file.

ABR.ADVANCE (animbr --)

Applies current DELTA to the animbrush then updates the delta pointer depending on the current
state of the direction and mode flags.

ABR.BLIT (x y animbr ---)

Blits the animbrush into the current rastport then calls ABR.ADVANCE to generate the next frame.
A simple PIC.BLIT will do as well but won't advance the frame. The PIC.BLIT call will work since
the start of the animbrush structure is a PICTURE struct.

ABR.CHECK (animbr -- , abort if bad , used internally)

ABR.FREE (animbr -- , free all parts of animbrush)

ABR.GET.FRAME (animbr --- current-frame)

Returns the current frame number (0 1 2 .. N) of the bitmap state of the animbrush. Uses the current
direction to deduce the current frame.

22 - 8 Anims and Animbrushes

ABR.GOTO.FRAME (frame animbr ---)

Cycles in the current direction until the asked for frame is generated.

ABR.LAST.FRAME? (animation --- flag)

Returns a TRUE flag if at the last frame of an animbrush.

ABR.LOAD? (animbrush <filename> -- error?)

Reads filename from input then calls $ABR.LOAD. This cannot be used in a colon definition. Use
$ABR.LOAD instead.

ABR.REVERSE (animbr ---)

Reverses the direction of the animbrush. That is the order in which the frames are generated by
ABR.ADVANCE is reversed. ABR.REVERSE does NOT change the current bitmap. Since we
allow forward and backward modes we must deduce the correct DELTA to use if we want to change
directions.

ABR.SAVE? (animation <filename> -- error?)

Saves the animbrush to the file name from the input stream.

ABR.STATS (animbrush ---)

Displays info about the current state of the animbrush.

ABR.TRANS.BLIT (x y animbr ---)

The PIC.TRANS.BLIT word only casts the bitmap into its shadow on the first call. Since our bitmap
is changing from frame to frame ABR.TRANS.BLIT recasts the shadow at each frame.

ANIMBRUSH (<animbrname> ---)

Creates a structure in the dictionary for an animbrush.

CONVERSION Words

Support for various conversion and animation editing code for EOR delta encoding used in
Animbrushes. A true error? flag can be returned if there is insufficient memory for the operation. For
examples of their use, see “JAnim:tests/test_conversion.f”.

ABR.APPEND.CEL? (picture animbr -- error?)

Appends a picture to the end of an AnimBrush. Must be same size as the animbrush.

ABR.BUILD? (pic0 pic1 animbr -- error?)

Builds a two frame animbrush from the two pictures. The width and height of the pictures should be
set to the size of the entire bitmap of the pictures. You can use PIC.WHOLE to ensure this. The two
pictures must be equal in size. The color map of pic0 is used in the generated animbrush.

ABR.CUR.DELTA (abr -- delta-address)

Returns the address of the current (next) delta

ABR.DELETE.CEL? (cel# animbr -- error?)

Deletes given cel from animbrush. An error can occur if memory cannot be allocated for the new
deltas.

ABR.DUP.CEL? (cel# animbr -- error? , inserts a duplicate cel)

Adds a new cel to animbrush that is a duplicate of the given cel.

Anims and Animbrushes 22 - 9

ABR.MAKE.DELTA (pic0 pic1 -- delta | 0)

Using the two given pictures makes an EOR type delta which is used in AnimBrushes. If the Delta
cannot be allocated, this will return zero. You must free the delta when you are done using
FREEBLOCK unless you add it to an AnimBrush. In that case it will get freed when you free the
AnimBrush The pictures must be the same size.

ABR.NORM (animbr --)

Changes direction to FORWARD and mode to LOOPING, saving previous state.

ABR.REPLACE.CEL? (picture cel# animbr -- error?)

Modifies the cel to be the given picture. Picture must be the same size as the animbrush. Calculates
the needed changes in the deltalist.

ANIM.MAKE.DELTA (pic0 pic1 -- delta | 0)

Using the two given pictures makes an ABS type delta which is used in Animations. If the Delta
cannot be allocated, this will return zero. You must free the delta when you are done using
FREEBLOCK unless you add it to an Animation. In that case it will get freed when you free the
Animation. The pictures must be the same size.

ANIM>ANIMBRUSH.PARTIAL? (first_cel# last_cel# anim animbr -- error?)

Convert part of an Animation to an AnimBrush.

ANIM>ANIMBRUSH? (anim animbr -- error?)

Constructs an AnimBrush from all of an initalized Animation. This calls
ANIM>ANIMBRUSH.PARTIAL? with a first cel# of 1, and a last cel# of 1. This will go through
all cels and wrap around to the beginning.

ANIMBRUSH>ANIM.PARTIAL? (first_cel# last_cel# animbr anim -- error?)

Convert part of an AnimBrush to an Animation.

ANIMBRUSH>ANIM? (anim animbr -- error?)

Constructs an Anim from all of an initalized AnimBrush. This calls
ANIMBRUSH>ANIM.PARTIAL? with a first cel# of 1, and a last cel# of 0. This will go through
all cels and wrap around to the beginning.

ENCODECOL (blk ht --)

Encodes a column in VSkip format in Delta-work @.

EORplane (ABSpl0 ABSpl1 ABSdeltabuff w h --)

Calculates and rotates an EOR type deltaplane.

MAKE.ABSDELTA (pic0 pic1 --)

Creates an absolute style delta for use in ANIMs. Delta stored at DELTA-WORK. Used in
ANIMBRUSH>ANIM.

LOW LEVEL support words

These words are used internally by the Animation system. You would not normally call these directly.
They are documented here in case you need to make internal modifications or to extend the system.

ADD.YTABLE.USER (ytable --)

Increment the YTable user counter. See FREE.YTABLE

22 - 10 Anims and Animbrushes

ALLOC.YTABLE (byteoffset linesize -- ytable | 0)

Creates or reuses a YTable. Fails if no memory available or no room is left in list. The constant
MAX_Ytabs determines the memory reserved for the list.

ALLOC.YTABLE.TRACKER (-- tracker | 0)

Called automatically by the first request for a YTABLE. Won't hurt anything if done again. A
YTABLE is a multiplication table used by the ANIM and ABR routines to optimize the decoding of
deltas.

CountSames (buff length -- SameCount)

Low-level word to scan a delta plane for same runs.

CREATE.YTABLE (byteoffset linesize --- ytable | 0)

Allocates and calculates a multiplication table for the decode routines.

DECODE_VKPLANE (inDELTA outBITPlane ytable ---)

ASM code to decode a bitplane of info from a DELTA chunk. This routine expects the DELTA to
consist of the absolute byte values in vertical byte skip form. Used by ANIMATION files.

DECODE_XORVKPLANE (inDELTA outBITPlane ytable ---)

ASM code to decode a bitplane of info from a DELTA chunk. This routine expects the DELTA to
consist of EOR byte values in vertical byte skip form. Used by ANIMBRUSH files.

FINDOP (buffptr len --- cnt op)

Main low-level word for VSkip encoding of a rotated EOR encoded buffer.

PUSHBYTE (byte memblk --)

Pushes byte to allocated memoryblock

FIND.YTABLE (byteoffset linesize --- ytable | 0)

Checks if an appropriate YTable is available for shared use. If so returns its address, if not returns 0.

FREE.YTABLE (ytable ---)

Frees memory for a YTable if not marked by another user. Last free deallocates the ytable list as
well.

FREELIST? (listaddr --)

Listaddr is the relative address of an allocated memory block obtained by a ALLOCBLOCK call.
This block contains addresses of a series of memblock addresss. FREELIST? parses the list and does
a FREEBLOCK on each memblock in the list, then does a FREEBLOCK for the list.

SCANFORZU (dataaddr length -- Z U)

Low-level word to scan a delta plane for zero and unique runs.

Anims and Animbrushes 22 - 11

