Chapter 21
IFF Support

IFF files contain information that can be shared between various programs. Graphics and Animation
programs on the Amiga save picture information in IFF files. Thus you can save a picture from a paint
program and useit in an animation program. Music programs will save sound samplesin IFF files The
| FF standard was developed by Electronic Arts.

JForth provides three levels of support for IFF files. The lowest allows you to write a program that can
read or write various |FF files. The second level provides an easy system for reading and writing
ILBM picturefiles. Thetop level provides arudimentary animation language based on the
manipulation and display of images read from IFF files.

I FF pictures can even be combined with free form graphics generated using the graphics library for
some very specia custom effects. An example application, JSHOW, isincluded to show you how to
open a custom screen and display pictures from afile. If you are not interested in the | FF picturefiles,
you may want to skip ahead to the section on the | FF file format.

We do not provide high level support for 8SV X sample files but this could be written using the IFF
tools. We do not imagine that this system will serve all the needs of all the people. We have,
however, tried to provide tools that are flexible enough so that others can use them. Our main intent
here isto provide you with a starting point for developing your own code. All the IFF source codeis
in the directory JFF.. | urge you to print it out, study it, modify it and make it your own.

Description of Files in JIFF:

PICTURES - High level system for loading and displaying I FF pictures. Thiswords could be used as
the basis for a bitmapped animation system. Y ou can combine these words with the normal
graphics callsfor custom effects. If you want to save your resulting animation to give to friends,
Cloneit!

PIC_EFFECTS - Specia effects using Pictures - Wipe and Fadein, Fadeout.
PIC_FLIP - Flip apicture about x,y or diagonaly.

ILBM_PARSER - Toolsfor parsing an ILBM bitmap.

ILBM_MAKER - Toolsfor writing a bitmap asan ILBM IFF file.
SHOW_IFF - Display tools, application for displaying IFF files.

I|FF_Support - Thisfile contains the core words for parsing an IFF file. It has tools for reading and
writing chunks, and processing special chunks like 'FORM'.

PACKING - Low level support for packing picture datainto ILBM form. Support for run length
encoding a Bitmap and converting a CTABLE to a CAMP.

UNPACKING - Routines for unpacking datafrom an ILBM IFFfile.
IFF.J - Definition of BitMapHeader structure and the common chunk IDS.

Tutorial 1 - Displaying Pictures

First let's compile the IFF code and display asimple picture. We provide an IFF picture, 2 brushes and
an animbrush in the directory JPics..

Enter:
I NCLUDE JI FF: SHOW | FF

IFF Support 21-1

JSHOW JPI CS: MOUNTAI NS. PI C

JSHOW will read your file, open a screen, and display the picture. Click in the top left corner when
you are done looking. (The images provided with JForth were chosen for their small size when
compressed and not on artistic merit, as you will see)

Tutorial 2 - The Picture System

Now let's get fancy with bitmaps. We will use the highest level - the "JForth |FF Picture System”. As
afirst step, let'sload a picture to use as our background. We can use the same picture of mountains.
Enter:

| NCLUDE JI FF: LOAD_PI C

GRINT \ Open Gaphics and Intuition libraries
Pl CTURE BACKG (declare structure)

" jpics:nountains. pi c" BACKG $PI C. LOAD? .

The second line declared a picture structure that is used to keep track of pictures that are loaded into
the system. Y ou can declare as many of these structures as you need. The third line loaded the
graphics from the file "jpics:mountains.pic” and stored it "in" the Picture structure called BACKG. A
zero should have been returned from this word if everything went OK. The FIRST picture loaded
always causes a screen to open with the proper resolution and depth to display that picture. Itis
important that this first picture be afull screen picture representative of the resolution you will be
using in your program.
Y ou should now see your picture. You can move between screens by hitting these key combinations:
<left-Amiga-N> to get the workbench screen, <left-Amiga-M> to get other screens. Y ou might now
want to shrink your JForth window and pull your workbench screen down abit (grab it at the top) so
you can see both screens. Click in the JForth window, then enter:

Pl CTURE MYSHI P

" jpics:ship.br* MYSH P $PI C.LOAD? . (read bitmap)

With the above commands, we read the JPICS:SHIP.BR brush into a bitmap and saved the pointer to
the bitmap in the structure MY SHIP.

Let'sdraw our ship in the screen. Enter:
20 30 MYSHIP PIC. BLIT

Click over to the screen with the mountains on it. Y ou will probably see arectangular block near the
top left of the screen. Inside the block will be the ship. (Theword "BLIT" is computerese for Block
Transfer of Pixels. This means one imageis drawn in another.)

The black rectangle is not abug. Bitmaps are rectangular and when you just draw them using
PIC.BLIT you get the whole thing. Luckily there isaway to copy a bitmap while keeping the
background of the bitmap transparent. Thiswill be more like what you would see when you draw with
abrush in apaint program.

To copy abitmap transparently we need to use a shadow mask of that bitmap. A shadow mask isa
specia kind of bitmap that has only one real memory plane. It is designed to look asif it has severa
planes. When you blit another bitmap into it, any color other than O will turn on the pixel in the
shadow mask. This shadow mask is then used to cut a hole in the destination bitmap. The picture can
then be placed into that hole using an OR mode Blit. The picture system will make a shadow mask for
you automatically if you try to do atransparent blit.

120 40 MYSHI P PIC. TRANS. BLI T
If you look at the picture now you should see another ship but without the rectangle.

Drawing a Portion of a Picture

For this next exercise we would like to have two pictures so let’s modify the picture called BACKG to

21-2 IFF Support

look different, then load another copy of our mountains. To change BACKG, let’s draw a big
rectangleinit. Enter (exactly):

4 GR COLCR!
10 10 310 190 GR RECT
There should now be a big rectangle in the middle of the picture.

Now let's reload up our mountains in another PICTURE for these next exercises.
Pl CTURE MNTNS
" jpics:mountains. pic" MNTNS $PI C. LOAD? .

Note: You will not see the new mountains picture. We are till displaying the modified BACKG
picture.

We can use the picture system to draw only a portion of a bitmap. Suppose we want to take part of the
top left of the mountain scene and draw it to the middle of the background. Enter:

100 80 MNTNS PI C. PUT. WH
This sets the width and height of the region to be drawn from. Enter:

120 70 MNTNS PIC. BLIT

Y ou should now see the top left corner drawn in the middle of the screen. We can set the corner of our
region anywhere in the picture. Enter:

200 100 MNTNS PI C. PUT. XY

0 O MNTNS PIC. BLIT

Y ou should now see a 100 by 80 pixel rectangular portion of the lower right of the mountain scene
drawn at 0,0 on the screen.

This diagram shows the source region in apicture called Source and theregionit isBlittedtoin a
picture called Destination.

Source Destination

xd,yd = 10,12
[

xs,ys = 20,40
¢

/

/

¢
40+30,20+60

20 40 SOURCE PIC.PUT.XY
60 30 SOURCE PIC.PUT.WH
10 12 SOURCE PIC.BLIT

Special Effects - Wipes and Fades

We can do afew special effects that might be useful in constructing a video. Remember the composite
output of your Amiga can be plugged into a VCR and recorded! To fade to black and then come back

IFF Support 21-3

with another picture. Enter:
4 BACKG PI C. FADEQUT
Pl C- START- BLACK ON (nake MNTNS start bl ack)
MNTNS PI C. DI SPLAY
8 MNTNS PI C. FADEI N

Thisis agentle way to transition between two scenes. The command PIC.DISPLAY makesthe
specified picture be visible. [Hacker's note - this works by copying pointersto that picture's bit planes
to the open screen's bitmap.] The word PIC.FADEOUT and IN take atime parameter and a picture
address. The time parameter is the number of frames to wait before each change in brightness.

In this system we distinguish between the picture being displayed and the picture being drawn into.
This allows usto do what is called double buffering which is away to eliminate some of thejittersin
animation. We are displaying the MNTNS picture but we are still drawing into the BACKGROUND
picture. Let'sdraw into the BACKGROUND using the Graphics toolbox then rapidly switch display
buffers. Enter:

23 45 " Peace On Earth" GR XYTEXT

If you look on the screen, you WON'T seethistext. Now enter:
BACKG PI C. DI SPLAY

We can do another effect called awipe that is used as a transition between pictures. Y ou may want to
resize the JForth window then pull down the Workbench screen so that you can see the graphics screen
aswell. Watch the screen and enter:

MNTNS PI C. WHOLE (reset source wi ndow to whole picture)

0 0 2 WPE_RIGHT MNTNS PI C. W PE

This told the Picture system to "wipe" the MNTNS picture into the current picture being drawn to. The
0,0 was the x,y of the top left corner. The 2 was the number of linesto blit per frame. The
WIPE_RIGHT parameter was the direction. Y ou can also choose between WIPE_LEFT, WIPE_UP,
and WIPE_DOWN. Y ou can wipe with part of a picture by setting the region with PIC.PUT.WH and
PIC.PUT.XY.

Moving a Brush, Restoring the Background

Let'sreload the MNTNS picture so that we have a clean dlate. Enter:
" jpics:nmountains. pic" MNTNS $PI C. LOAD? .
MNTNS PI C. DI SPLAY
MNTNS PI C. DRAWTO

Suppose we wanted to make a brush move smoothly across the screen. We would need to draw it at
one location, then draw it again moved dightly in the direction of motion, and so on. If we do this,
however, we end up with atrail of brushes. Obviously we must erase one image before we draw the
next. How can we do that? There are basically two ways. Oneisto rebuild the entire image by
copying in afresh image of the background that was saved away, then drawing the brush in the new
position. This assumes that you have a copy of the background saved. If that is not that case then you
will need method number two.

In this method we save a small portion of the background, just the amount that will be covered when
we draw our brush. To erase our brush we can then copy this saved portion back to its original
location.

Let'stry thiswith our ship. First we must alocate a bitmap for this backup image. Enter:
0 MYSHI P PI C. ALLOC. BACKUP? . \ nust be zero

A zerois passed as the first parameter to select between backup image number zero or one. These two
backups come in handy when doing double buffering because the brush appears in two backgrounds

Now let's make a backup copy under our brush, then draw the brush. Enter:

21 -4 IFF Support

20 45 0 MYSHI P PI C. BACKUP. NTH \ no visibl e change

20 45 MYSHIP PIC. BLIT \ nust be to same X Y
Now to move the brush we must first restore the old background. Enter:

0 MYSHI P PI C. RESTORE. NTH

Notice that the background is restored.and we can redraw the brush in anew location. Enter:
24 53 0 MYSHI P PI C. BACKUP. NTH
24 53 MYSHI P PIC. BLIT
By continuing in this manner, a brush can be made to move across the screen.
If you are moving multiple brushes in an image that might overlap, you must follow a simple rule:

For multiple brushes, call PIC.RESTORE.NTH in the opposite order that you call
PIC.BACKUP.NTH.

Otherwise you will not restore the image properly.
Cleaning Up

We must now cleanup the allocated memory, close the screen. Enter:

MNTNS PI C. FREE

BACKG PI C. FREE

MYSHI P PI C. FREE
Whichever pictureis currently being displayed will close the screen when freed When finished using
the graphics toolbox, we should close the Graphics and Intuition library be entering:

GR TERM

For more examples of using the picture system, look at our simple test program: JFF:TEST_PIC.

Picture System Reference

The Picture System provides easy to use routines for displaying and manipulating images read from
IFF ILBM files. It can be loaded by entering:

I NCLUDE JI FF: LOAD PI C
Error Handling

Many of the routines return an ERROR? flag that is non-zero if there was an error. Y our program
should always check this flag when it is returned. The most common sources of errors would be if
memory could not be allocated for an operation, or if there was a problem with afile. Well written
applications should expect these errors to occur periodically and to respond gracefully when they do.
Do not smply ABORT because your user might lose valuable work in progress. Seethe
documentation for GOTO.ERROR for tips on handling errors.

Double Buffering

Double buffering is atechnique used to achieve smooth animations. The basic sequence of operations
is:

Di splay Buffer 0O

Draw to Buffer 1

Di splay Buffer 1

Draw to Buffer 0O

Repeat

In this manner the viewer always sees a static image while the other image is being drawn.

IFF Support 21-5

There are three ways to do double buffering provided by JForth, each with their own advantages and
disadvantages. Y ou can also develop your own system if none of these suit your needs.

1) Usethetoolsin JFF:DOUBLE_BUFFER. These are demonstrated in JD:DEMO_DBUF. The
advantage of these isthat they are independent of the PICTURE system, and are very convenient.

2) Use PIC.VIEW to switch displays. This switches very fast because it uses LoadView() and is very
convenient when using the PICTURE system. The disadvantage is that it works below the level of
Intuition so mouse input may not go where you think it will. Be sure to bring your screen to front
before calling this or else your mouse input may go to another screen. To bring the screen that the
PICTURE system usesto the front, enter:

SI FF- SCREEN @ Scr eenToFront ()

3) Use PIC.DISPLAY to switch displays. Thisworkswell with Intuition but is quite low. It takes
about 2-3 frames just to switch displays compared to PIC.VIEW which is virtually instantaneous.

Using your Own Display Screen

The PICTURE system uses the screen pointed to by the variable SIFF-SCREEN. If you load a picture
using $PIC.LOAD? and there is no screen, a screen will be opened for you and its address placed in
SIFF-SCREEN. |f you want to use your own screen, open it before calling $PIC.LOAD? and place
your screen address in SIFF-SCREEN.

Clipping with Pictures

There are two types of clipping involved with the Picture system. If you draw to the picture that
initiated the opening of the screen, then all graphics operations will be clipped to the BACKDROP
window in that screen. Thisincludes callsto PIC.BLIT and other callslike GR.DRAW or GR.TEXT.
If, however, you call PIC.DRAWTO to draw to another picture, then only PIC.xxx calls will be
clipped. Linedrawing using GR.DRAW and similar callswill not be clipped and could result in the
trashing of memory. Thisis because the RastPort of the BACKDROP window has a ClipRect but the
RastPort for a picture does not. The PIC.xxx calls are clipped using a custom clipping routine
designed for rectangular blits. By setting the variable PIC-CLIPPING OFF you can turn off this
custom clipping.

All drawing is directed to the RastPort whose ABSOLUTE address isin the variable GR-CURRPORT.
This can be set directly or by using GR.SET.CURWINDOW.

Picture Glossary

JIFF:PICTURE

$PI C. LOAD? ($filenane picture -- error? , load |FF picture)

Load an IFF ILBM picture from afileto apicture. Thefirst one loaded will open an appropriately
sized screen for display. Make sure, therefore, that the first picture loaded is afull screen picture
that isthe right resolution for the rest of your animation. Y ou might want to load atitle screen first.
Set the variable PIC-START-BLACK to TRUE if you want this one to start black. Y ou can then
fadein using PIC.FADEIN .

$PI C. SAVE? ($filenane picture -- error?)

Save the contents of apicturein an IFF ILBM file for use with other graphics applications. The
bitmap will be compressed using run length encoding.

PIC-CLIPPING (-- addr)

When thisvariableis set TRUE, then PIC.BLIT and PIC.TRANS.BLIT will be clipped to the edges
of the destination picture. This may be redundant if drawing to a window with Amiga based
clipping.

21-6 IFF Support

Pl C- START-BLACK (-- addr , variable to control color)
If thisvariableis set TRUE, then $PIC.LOAD? and PIC.DISPLAY will set the screen to all black.
Y ou can then use PIC.FADEIN to make the picture visible.

PIC. ?BREAK (-- , OBSCLETE, don't use)

Pl C. ALLOC. BACKUP? (backup# picture -- error?)
Allocate a bitmap to use with PIC.BACKUP.NTH. Backup#isO or 1.

Pl C. ALLCC. SHADOW? (picture -- error?)
Allocate a shadow mask bitmap for use with PIC.TRANS.BLIT. Y ou must aso call
PIC.CAST.SHADOW before caling PIC. TRANS.BLIT.

Pl C. ALLOC. VIEW? (picture -- error?)
Allocate aVIEW for PIC.VIEW.

Pl C. BACKUP. NTH (dstx dsty backup# pict --)

Backup part of the image that will be overwritten when we do a PIC.BLIT or PIC.TRANS.BLIT at
the same DSTX and DSTY . That image can then be restored using PIC.RESTORE.NTH. Thisis
used mostly when using amoving brush. Backup#is0 or 1.

PICBLIT (xd yd picture -- , blit to x,y)

Blit the bitmap of a picture into the current rastport at xd,yd. The current rastport is the one whose
absolute addressisin GR-CURRPORT . PIC.DRAWTO can be used to select apictureto BLIT into.
By BLITting a series of related pictures you can obtain smooth animation effects.

PICBULD (bitmap picture -- , build a picture fromscratch)
If you want to use a bitmap that does not come from an | FF file as a picture, use thisword. The
bitmap should already be initialized and have an image associated with it.

Pl C. CAST. SHADOW (picture --)
Create a shadow mask by ORing each plane of apicture into asingle plane. Y ou should call this
routine anytime you change a picture that you use with PIC.TRANS.BLIT.

Pl C. CLOSEBOX (-- , OBSOLETE, don't use)

PI C. COPY (srcpic dstpic -- , copy bitmaps and color table)
Copy the contents of one picture to another. The second picture must be the same size as the first.
Use PIC.DUPLICATE to alocate a same sized picture first if needed.

Pl C. DI SPLAY (picture -- , display picture by copying bitmps)
Causes this picture to be the current one displayed. Use thiswith PIC.DRAWTO for double
buffering. Loads pointers to this picture's bitmap planes into the SIFF screen's bitmap.

Pl C. DRAWO (picture -- , nake this the destination)

Sets the JForth graphics variable GR-CURRPORT to point to this picture's Rastport (absolute
address). Now PIC.BLIT, PIC.WIPE, etc. and all GR.xxx commands will draw into this pictures
bitmap. Y ou can draw into one picture while displaying another for a double buffering effect.

Warning: Pictures do not have clipping layersin their RastPorts. Thus any line drawing or other
graphics operations may extend beyond the edges of the pictures and overwrite memory. PIC.BLIT
and PIC.TRANS.BLIT will continue to be clipped aslong as PIC-CLIPPING is set TRUE.

IFF Support 21-7

Pl C. DUPLI CATE? (srcpic dstpic -- error? ,)
Take an empty picture and allocate bitmaps for it the same size as the source picture. Then call
PIC.COPY to copy the bitmap contents.

PIC FREE (picture -- , free all parts of picture)

Free al alocated internal data. This MUST be called when you are completely through using a
picture. The picturethat is currently being displayed viaPIC.DISPLAY will close the SIFF screen
when thisword is called.

Pl C. GET. DEPTH (picture -- depth , nunber of planes)
PIC. GET.WH (picture -- wh , fetch source wand h)
PI C. GET. XY (picture -- xy , fetch source x and y)
Pl C. GET. XYOFF (picture -- x y , fetch dest x and y)

Pl C. MVAKE? (colrtab| O #col ors deep wide high pict -- error?)

Create bitmaps and other necessary structures for a picture based on input parameters. Thisisan
alternative to $PIC.LOAD?. COLRTAB can be zero or the address of a color table whose contents
will be copied to anewly allocated color table.

PI C. OPEN? (picture -- screen | 0)

Open a screen based on the picture.

PIC PUT.WH (width height picture -- , set source w dth, height)
Sets the width and height of arectangular portion of apicture. Thisiswhat will be drawn using
PIC.BLIT and PIC.WIPE.

PIC PUT.XY (x y picture -- , set source x and y)

Set the top,left x,y of arectangle to draw from. Used with PIC.PUT.WH .

PI C. PUT. XYOFF (x y picture -- , set dest x and y)

When this picture is drawn with PIC.BLIT or PIC.TRANS.BLIT, the destination x,y will be offset
using these values. This can be used to "center" a picture so that the coordinates you pass to
PIC.BLIT determine where a certain part of a bitmap will land other than the top,left corner.

Pl C. RESTORE. NTH (backup# picture --)

Restore the part of the image saved using PIC.BACKUP.NTH.

PIC. TRANS.BLIT (xd yd picture -- , blit transparently)

Copy abitmap into the current rastport using a transparent background. Thisis useful when using
brushes from a point program. If you are drawing a head then you just want the round part
superimposed over the background. Without transparency, you would get a black rectangle with a
head in the middle! This routine uses a shadow mask rastport. The mask is used to punch aholein
the background where thereis datain the picture. It then ORs the bitmap with the rastport. The
opague pixels in the bitmap will line up with the black hole in the background. The transparent
black pixelsin the bitmap will line up with remaining pixels in the background. When you or these
you get a nice superimposition of the bitmap over the rastport.

Pl C. USE. COLORS (picture -- , apply colors to screen)
Use the color table from a picture in the SIFF screen.

PIC VIEW(picture --)
Displays apicture by calling LoadView(). Thiswill call PIC. ALLOC.VIEW?just in caseit hasn't

21 -8 IFF Support

been called yet. Thisisfaster than PIC.DISPLAY but Intuition will not realize the display has
changed. This can cause unexpected results. If, for example, the Workbench screen was showing
before this call, mouse clicks will still go to the Workbench even though this picture is showing in
front.

PIC. WHOLE (picture -- , reset bounds to use whole picture)

Resets the source x,y and w;,h to the full picture boundaries.

JIFF:PIC_EFFECTS

PI C. BRIGHTNESS (| evel picture -- , scale colornmaps)
Set the SIFF screen brightness by scaling the color map in apicture. The rangeis zero to 16 where
16 isfull brightness.

PIC. FADEIN (frames picture -- , fade in fromblack)
Call PIC.BRIGHTNESS in aloop from 0 to 16. The frames parameter determines how many video
frames to wait between successive level changes. A value of 4 isnice.

Pl C. FADEQUT (frames picture -- , fade to black)

Pl C. NEXT. WPE (picture -- done?)
Draw next portion of awipe based on PIC.SETUP.WIPE call. Call thisin aloop until it returns true.
It doesn't hurt to call it after it's done.

Pl C. ROTATE (-- , rotate siff-screen)

Rotate the plane pointers in the SIFF screen. Causes wild color changes. Do it as many times as there
are planesif you want to get back to the same color. Use PIC.GET.DEPTH to find the number of
planes.

Pl C. SETUP. WPE (xd yd nlines direction picture --)

Set up apicture for awipe effect. The datawill be taken from the source rectangle and drawn to
where xd,yd is at the top,left corner. Y ou can specify the number of lines per wipe pass. The more
lines the faster the wipe. Try to make it divide evenly into the number of linestotal. The direction
parameter can be one of four values:

W PE_LEFT WPE_RIGHT WPE_UP W PE_DOM

WIPE_LEFT will cause to wipe to progress from right to left. Y ou may setup several pictures then
call PIC.NEXT.WIPE for each one in aloop to have simultaneous wipes happening in parallel.

PICWPE (xd yd nlines direction pict -- , wipe a picture)
Call PIC.SETUP.WIPE then loop on PIC.NEXT.WIPE until done.

JIFF:PIC_FLIP

PIC FLIP.X (picture --)
Flip apicture horizontally.

PIC.FLIP.Y (picture --)
Flip apicture verticaly.

IFF Support 21-9

PIC. FLIP.DIAG (picture --)
Flip apicture about aline drawn from two diagonal corners.

IFF File Support

(For amore detailed description of |FF, please see the ROM Kernal Manual Volume 2)

IFF files are made up of "chunks'. A chunk has 3 parts:
1) Chunk ID - 4 characters, eg. 'FORM, 'BMD
2) Chunk Size - in bytes
3) Chunk Data - whatever

The chunk ID tells aprogram what kind of chunk it is. For example, 'CMAP means that the chunk isa
color map for apicture. A chunk ID consists of 4 character packed into a4 byte integer. The second
part, the chunk size, tells you how many bytes are in the data portion. (If there are an odd number of
data bytes, a pad byte will be added so that the next chunk starts on an even boundary.) The data
portion is where the actual pictures, samples, note lists, etc. are stored.

There are several Chunk |Ds which are considered special. These chunks can contain other chunksin
their data portion. They are FORM, LIST and CAT. An IFF file consists of one of these 3 chunks
containing one or more sub chunks. FORM chunks are the most common of the 3. The data portion of
aFORM consists of a FormType followed by a number of subchunks. One common FormTypeis
'ILBM" which means that the FORM contains chunks that describe an InterLeaved BitMap, or picture.
The chunks that describe a picture include 'BMHD', or BitMapHeaDer, which tells you how many
pixels high and wide a pictureis, how many bit planesit has, where it is positioned on the screen, etc.
Another chunk in an ILBM isthe 'BODY'" that contains the actual pixels of the picture. These are often
compressed to save space on the disk.

How JForth Handles IFF files

When you open an IFF file, you redlly don't know what kind of chunks you will find inside. To read
an |FFfile, therefore, you must be prepared to handle anything you find.

JrForth provides aword called IFF.SCAN that reads the chunk headers and eatsits way through an |FF
fileto see what chunks are there. It uses the chunk size to move from one chunk to the next. Onceit
has the chunk 1D and size it passes these to the deferred word | FF.PROCESS.CHUNK .
IFF.PROCESS.CHUNK can then check to seeif it isa special type of chunk, ie. a'FORM', 'LIST" or
'‘CAT'. Thiscan be done by calling IFF.SPECIAL? which will process the special chunk if it is one.
IFF.SPECIAL? returns aflag that tells IFF.PROCESS.CHUNK whether the chunk has already been
processed. If not IFF.PROCESS.CHUNK can do whatever it needsto for that chunk. Y ou can set this
word to be anything you want and thus control how the IFF fileis processed. There are several chunk
processors to parse ILBM files, or to print an outline of chunksin thefile.

Tutorial 3 - Vectored Parsing of IFF Files
In the previous tutorial, we used the existing ILBM parser to display an IFF picture. Let's now write
our own custom parser.

(The parsing of IFF filesis done using deferred words. If you are not familiar with DEFER, please see
the section on DEFER in this manual.)

IFF.PROCESS.CHUNK isthe most important deferred word in this system. Its stack diagramiis:
| FF. PROCESS. CHUNK (size chkid --)

Printing Chunk Headers
Itiscaled by IFF.SCAN whichiscaled by IFF.DOFILE. We can write aword to be executed when

21-10 IFF Support

IFF.PROCESS.CHUNK iscalled. Let'sfirst write asimple word to print out the header of a chunk.
We have aword called .CHKID that will print a packed 4 character chunk 1D so let's useit. Enter:

SHOW CHUNK (size chkid --)
. CHKI D SPACE . CR

20 ' BMHD SHOW CHUNK
Now let's use this to examine our MOUNTAINS file. Make sure you are in the same directory as your
MOUNTAINS file then enter:

" SHOW CHUNK | S | FF. PROCESS. CHUNK

20 'BVMHD | FF. PROCESS. CHUNK

| FF. DOFI LE MOUNTAI NS
Notice that the chunk in the fileisa FORM chunk. Where are the other chunks, the BitMapHeader
(BMHD) or the pixels (BODY)? They are nested inside the FORM chunk. To parse an |FF file we

need to have arecursive parser. Thisiseasier than it sounds. We have a special word for handling
chunks like FORM, LIST and CAT called IFF.SPECIAL? It's stack diagramis:

| FF. SPECI AL? (size chkid -- handl ed?)
If the chunk is a special recursive chunk, thisword will handle it and return TRUE. Other wiseit will

return FALSE. To handle a special chunk IFF.SPECIAL? calls IFF.SCAN which in turn calls
IFF.PROCESS.CHUNK . Enough talk, let's show we can use thisin our code. Enter:

NESTED. SHOW (size chkid --)
2DUP | FF. SPECI AL?
IF 2DROP (we can ignore it)
ELSE SHOW CHUNK
THEN
" NESTED. SHOW | S | FF. PROCESS. CHUNK
| FF. DOFI LE MOUNTAI NS
We should now see all the chunksin thefile listed. We have aword aready written that does the
above using IFF-NESTED to show the recursive nature of thefile. ("Now he tellsme!") Try:
| FF. CHECK MOUNTAI NS

This word can be cloned if you want it.
Parsing ILBM FORMs

JForth provides tools specifically for parsing an ILBM form. The word $ILBM.PARSE.FILE will
scan afilefor chunks. The BitMapHeader is copied to a structure called ILBM-Header. This contains
information used to decipher therest of the file. The packed BODY chunk and the CMAP chunk are
read into allocated memory, and their pointersleft in the variable ILBM-BODY and ILBM-CMAP.
GRAB chunks and CAMG chunks are read directly into variables called ILBM-GRABXY and ILBM-
CAMG. When the parser is finished you can pull values from these storage locations and build a
display. Look inthefile JFF:SHOW _IFF for examples of how thisis done.

Also take alook at the file JA:Dumpl FF.f which prints the contents of an IFF file for analysis.

IFF Support Glossary

JIFF:ILBM_PARSER

$1 LBM PARSE. FI LE? ($filename -- error? , parse an |FF file)
Parse an ILBM file based on whatever isin IFF.PROCESS.CHUNK. Uses$IFF.DOFILE. Use

IFF Support 21-11

ILBM.PARSE.INIT toinitialize IFF.PROCESS.CHUNK if you have changed it and want to use the
origina ILBM parser.

HEADER>BI TMAP (bit mapheader -- bitmap | 0 , allocate bitnmap)
Allocate a properly sized bitmap based on the contents of the BitMapHeader structure.

These next few variables and structures are set by the ILBM Parser asit reads an IFF file. Look in
here for the information found.

| LBMBODY (-- var-addr , holds pointer to allocated ' BODY')

| LBMBSI ZE (-- var-addr , holds size of 'BODY')

| LBM CAMG (-- var-addr , holds viewtndes fromany ' CAMG chunk)
| LBM GRABXY (-- var-addr , holds packed 16 bit x,y from' GRAB)
| LBM CVMAP (-- var-addr , holds pointer to allocated ' CMAP')

| LBM CVBI ZE (-- var-addr , holds size in bytes of CVAP)

| LBMHEADER (-- addr , handy BitMapHeader structure)
The ILBM Parser fills this structure with information from the 'BMHD' chunk. Read the IFF.Jfile
for alist of members.

|LBM ALLCC. BI TMAP (-- bitmap | 0)

Allocate a bitmap of the appropriate size and depth based on the information in the ILBM-Header.
This bitmap will be used to receive the bitmap asit is unpacked from the 'BODY' chunk. Calls
HEADER>BITMAP. Returns zero if the bitmap could not be allocated.

| LBM CLEANUP (-- , free any data allocated)
Free BODY and CMAP chunk memory allocated by ILBM.HANDLER.

| LBM FILL. BI TMAP (bitmap -- bitmap | 0)

Unpack the body pointed to by ILBM-BODY into the bitmap. Returns O if there is an unpacking
error.

| LBM PARSER (size chkid -- , default handler used to parse |ILBM

|FF.PROCESS.CHUNK isset to call thisword by ILBM.INIT. BMHD chunks are copied to ILBM-
HEADER , aBitMapHeader structure. BODY and CMAP chunks are read into an allocated
memory areawhose addressis stored in ILBM-BODY or ILBM-CMAP. GRAB chunks are read
into the ILBM-GRABXY variable. CAMG chunks are read into the ILBM-CAMG variable. Any
other chunks are passed to the deferred word ILBM.OTHER.HANDLER for custom processing.

ILBMINIT (-- , set vectors)
Set IFF.PROCESS.CHUNK to ILBM.HANDLER and set ILBM.OTHER.HANDLER to
IFF.NOT.PROC .

| LBM MAKE. Bl TMAP (body bsi ze brmheader -- bitnmap | 0)
Allocate and fill a bitmap based on body and BitMapHeader.

| LBM MAKE. CTABLE (-- ctable numcolors)

Allocate a color table based on the information in the CMAP chunk. Return two NULLSsif there
was no CMAP or it couldn't be allocated.

21-12 IFF Support

| LBM OTHER. HANDLER (size chkid -- , handl e other chunks)

Deferred word called by ILBM.HANDLER when it sees a chunk it doesn't handle, 'CRNG' for
example.

JIFF:ILBM_MAKER

| LBM HEADER. SETUP (bi tnap brmapheader --
Setup BitMapHeader structure values based on the bitmap.

, set w,h and depth)

| LBM WRI TE. Bl TMAP? (bitmap -- error?)
Write asaBODY chunk to the currently open IFF file.

ILBM WRI TE. | LBM? (bmap ctable ctable# -- error?)

Write a bitmap and a ctable to an IFF file. Y ou must call $IFF.OPEN first then call IFF.CLOSE.
Thisisto be considered as an example program. Y ou will probably want to make a copy of thisin
another file and modify it to suit your purposes.

$SCREEN>| FF? (screen $filename -- error?)

This handy word pulls the bitmap and colortable from a screen and writes an IFF file.

JIFF:SHOW_IFF
Most of these words use the screen pointed to by the SIFF-SCREEN variable.

$I FF>BI TMAP ($filename -- bitmap | 0)

Read afile, allocate a bitmap and load it with the picture in the file. Y ou can use this bitmap as a

brush or whatever. Y ou must use FREE.BITMAP from JU:GRAPH_SUPPORT to free this bitmap
when done.

$I FF>DI SPLAY ($filenane -- bitmap | O, display iff on screen)

Read an IFF file, open an appropriate screen and display the picture. The screen address will bein
the variable SIFF-SCREEN . When done you should call SIFF.CLOSE and then use
FREE.BITMAP to deallocate the bitmap you have been given. Look at the source code for JISHOW.

| FF>BI TMAP (<filename> -- bitmap | 0, read IFF file)
Reads filename from input stream and calls $IFF>BITMAP.

| FF>DI SPLAY (<filenane> -- bitmap | 0 , open screen and displ ay)
Reads filename from input stream and calls $IFF>DISPLAY .
JSHOW (<filename> --)

Read the IFF file and display the picture. Take down the picture when you click the topleft corner or
hit akey. This can be cloned for a handy |FF display program.

IFF Support 21-13

SI FF- SCREEN (-- addr , variable hol ding address of screen)
SIFF-WNDOW (-- addr , variable hol ding address of w ndow)

S| FF. BLACKQUT (-- , black out colors on screen)

SIFF.SHONT (-- , Put window display in front for cl osebox.)

SI FF. USE. CVAP (cmap cnsize -- , use CMAP directly from | FF)
Set colorsin SIFF screen based on CMAP.

S| FF. USE. CTABLE (ctable #colors -- , use Am ga CTABLE)

SIFF.CLCSE (-- , Close SIFF screen and wi ndow.)

SIFF.WAIT (-- , Wait until CLOSEBOX or Keyboard is hit.)

Low Level Support

JIFF:IFF_SUPPORT

$I FF. DOFI LE? ($filename -- error?)

Process file using deferred words. Open the file whose name is on the stack, pull out the chunks and
call IFF.PROCESS.CHUNK after verifying that it isan IFF file.

$I FF. OPEN? ($filenane -- fileid | 0)
Open afilefor IFF.READ and IFF.WRITE. Set IFF-FILEID variable to file-pointer.
.CHKID (chkid -- , print a chunk id as 4 characters)

| FF. BEG N. FORM? (type -- start-position error?)

Start writing an IFF 'FORM' chunk. An example of typeis'ILBM'. The start position is saved for
IFF.END.FORM.

| FF. CHECK (<filename> -- , print chunks)

Set |FF.PROCESS.CHUNK to execute IFF.PRINT.CHUNK then call IFF.DOFILE. Thisresultsina
list of the chunksthat arein an IFF file. Thisisahandy tool that could be cloned.

| FF. NOT. PROC (size chkid -- , default for |LBM OTHER HANDLER)
Prints a message that a chunk was not processed.
| FF. PRINT. CHUNK (size chkid -- , print chunk id and size)

| FF. PROCESS. CHUNK (size chkid --)

This deferred word is called from |FF.SCAN when anew chunk is encountered in thefile. You can
set it to your own word for customized parsing of |FF files.

| FF. PROCESS. FORM (size --)

Thisreads a'FORM' chunk and processes all of the chunksit finds by calling
IFF.PROCESS.CHUNK .

| FF. READ (addr #bytes -- #bytes , read fromopen IFF file)
This uses the fileid obtained using $IFF.OPEN .

21 -14 IFF Support

| FF. READ? (addr #bytes -- error?, read fromopen IFF file)
Calls IFF.READ and returns ERROR? true if the number of bytes read does not the number of bytes
requested.

| FF. READ. CHKID (-- size chkid | 0 0)
Read the next 8 bytesin file assuming it is a chunk header. Return 0 O if an error occurs.

| FF. READ. DATA (dsize -- addr | null , allocate space)

Read DSIZE bytes from the |FF file into an allocated memory area. Return NULL if couldn't
allocate. Thisishandy if you encounter abig chunk.

| FF. READ. TYPE (-- typeid | 0)

Read the next 4 byte from the |FF file. Used by words like IFF.PROCESS.FORM to check the
FORM type. Return zero if an error occurs.

| FF. SCAN (-- size , read chunk header and doit)

Read the next chunk header and passit to |FF.PROCESS.CHUNK then move the file pointer past
that chunk's data.

| FF. SEEK (position -- , nove file pointer, "seek")
The next read or write will occur at this new position.

| FF. SPECI AL? (size chkid -- done?)

Check to see if the chunk is one of the special type, ie. 'FORM', 'LIST", or '"CAT". If so processit
and return true. This calls IFF.SCAN which can result in recursion. Increments IFF-NESTED to
indicate depth of recursion.

| FF.WHERE (-- current_pos , in file)
Where are we currently positioned in file?

| FF. WRI TE (addr #bytes -- #bytes , wite to open IFF file)
Write data to file opened by $IFF.OPEN .

| FF. WRI TE? (addr #bytes -- error?)

Calls IFF.WRITE then checks to make sure the number of bytes written matches the requested
number. Note: the stack diagram for this word has changed since JForth V2.0. See the note on
incompatibilities at the end of this chapter.

| FF. WRI TE. CHKI D? (size chkid -- error? , wite chunk header)
Write an 8 byte chunk header using IFF.WRITE.

| FF. WRI TE. CHUNK? (address size chkid -- error?)
Write complete chunk to current file.

JIFF:UNPACKING

BODY>BlI TMAP (bodyptr bsize bmap conpr -- bmap | NULL)
Unpack a body into a bitmap using given compression mode.

CMAP>CTABLE (cnap ctable #entries -- , unpack)
Convert an |IFF CMAP to an Amiga CTABLE array.

IFF Support 21-15

UNPACKROW (src dst #src #dst -- src' dst' #src' error?)
Unpack arun length encoded row from source to destination.

JIFF:PACKING

Thisisanew version of PACKING provided by Martin Kees. It usesavirtual file system to write
BODY chunksto afile asthey are created.

CTABLE>CVAP (ctable cnmap #entries -- , pack)
Convert aCTABLE array to an IFF CMAP.

| LBM MAKE. BODY (bmap conpr -- bodyptr bsize | -1)

Allocate a body memory area then pack the bitmap into it using the desired compression mode.
Return -1 if an error occurs. Usesthe virtual file system to write to a RAM: based file, then reads it
back.

WRI TE. Bl TMAP. BODY { brmap ifffile conmpr -- bodysize | 0 }
Write abitmap to afileasaBODY chunk. It will be run length encoded if COMPR = 0.

JIFF:PACKING_OLD

Thisisthe old version of the packing code that had problems with highly randomized pictures whose
compressed form was larger than the original form. Obsolete.

Bl TMAP>BODY (bmap bodyptr bsize conpr -- bsize'|-1)
Pack a bitmap into a body using given compression mode.

PACKROW (src dst src# dst# -- dst' dst# error?)
Pack arow of data using run length encoding. This could be used for other than picture data!

Incompatibilities with JForth V2.0

There have been some changes that may make code written using JForth 2.0 incompatible with JForth
V3.0. Inversion 2.0, when an error occurred, the deferred word IFF.ERROR was called which
typically caused an abort. Thisis fine when debugging but is totally unacceptable for afinished
application. A properly written application should test for possible errors and handle them gracefully.
The previous version did not allow programmers to do that. We felt it was better to correct this
problem than to perpetuate a mistake. Unfortunately, some words have been changed. Words that
might fail due to insufficient memory or problems with afile now return an error flag. We added a'?
at the end of their names to distinguish them from their original versions and to indicate that they
return something of interest. Examplesare ILBM.WRITE.BITMAP? and $IFF.DOFILE?. One
notable exception to thisis IFF.WRITE? which existed in V2.0 but did not return aflag. The stack
diagram for this word was actually changed so that it now returns an error flag. | hated doing this but
felt it was justified for the purpose of consistency.

Another incompatibility is that when $PIC.LOAD? isfirst caled, the current RastPort is set to that of
the backdrop window. The advantage of thisisthat clipping is active for all graphics. If you then call
PIC.DISPLAY for another picture, graphics output will got to that picture asif you had called
PIC.DRAWTO for that picture. If you want graphic output to go to a specific picture you must call
PIC.DRAWTO explicitly. Be aware that only PIC.xxx calls are clipped after acall to PIC.DRAWTO.
See the section in this chapter on clipping for more information.

21 -16 IFF Support

