
Chapter 20
EZMenu System

Tutorial

The Amiga provides a very sophisticated pull down menu system that greatly enhances the usability of
an application. A group of menus can be linked together and associated with a specific window. Each
menu has a list of items that the user can select. Each item can be either text or a bitmapped image.
Menu picks are obtained by requesting IDCMP messages. When an application receives a menu pick,
it executes the appropriate piece of code. A detailed explanation of how this system works can be
found in the Intuition Manual.

Using JForth, you can access all of the features of Intuition Menus. Because the Amiga has so many
options, however, this can be a somewhat difficult process. We decided to offer a simplified Menu
interface that will suffice for most applications. We assume that you would like one or more menus
with simple text items. The EZMENU system will build Menu, MenuItem, and IntuiText structures
based on this assumption. If you want more fancy menus, you can still use the EZMENU system, but
you will need to tweak things a bit.

An example of using the EZMenu system can be found in the file JD:DEMO_MENUS.

EZMenu Structure

The EZMenu system is based on the use of a special JForth structure called an "EZMenu". The
EZMenu contains an Intuition Menu structure, a pointer to an array of IntuiText items, a pointer to an
array of CFAs (function addresses), and a count of how many items are in the EZMenu. It is defined
in the file JU:AMIGA_MENUS . To use the EZMenu system, you first create a number of EZMenu
structures. The address of these structures is then passed to the EZMenu routines. By combining the
EZMenu routines with the low level Menu routines described later, you can have total control over the
menus.

AMENU Program

Let's write a simple menu program that opens a window and attaches to it one menu with three items.
We will then scan for Amiga events and process any MENUPICK events. Once you are comfortable
with the essentials covered by this program you can explore JD:DEMO_MENUS and
JA:EZWALKER.F for more extensive examples.

First we will need to compile the graphics and event support which we studied earlier and the EZMenu
code. I recommend typing this program into a file as we go since it is a little long for keyboard entry.

INCLUDE? NEWWINDOW.SETUP JU:AMIGA_GRAPH

INCLUDE? EV.GETCLASS JU:AMIGA_EVENTS

INCLUDE? EZMENU JU:AMIGA_MENUS

In the file, after the INCLUDE?s, let's put a call to ANEW. This will help us when we reload this
program by automatically forgetting the previous version. We will then create our own EZMenu
structure to use with the EZMenu routines. You will need one EZMenu structure for each menu.

ANEW TASK-AMENU

EZMENU MY-MENU

Now let's write a word that will initialize our menu. We need to allocate room for 3 menu items.
EZMENU.ALLOC? will allocate all the needed MenuItem and IntuiText structures needed for the
menu. EZMENU.SETUP will link all of these structures together and give the menu a name. The 0

EZMenu System 20 - 1

indicates that this is the 0th menu for the menu. Menus and menu items are all numbered starting with
zero. We then use EZMENU.TEXT! to give each menu item a name Finally we assign a Command
Sequence Key to the "Quit" item. This will allow us to quit by simply holding down the Right Amiga
Key and hitting 'Q'.

: MY-MENU.INIT (-- error? , INITIALIZE MENU)

\ Allocate space for 3 menu items

3 MY-MENU EZMENU.ALLOC? \ returns 0 if it fails

IF

\ Set name of menu and position in list.

0" Project" 0 MY-MENU EZMENU.SETUP

\ Define the text for each menu item.

0" Open" 0 MY-MENU EZMENU.TEXT!

0" Close" 1 MY-MENU EZMENU.TEXT!

0" Quit" 2 MY-MENU EZMENU.TEXT!

ASCII Q 2 MY-MENU EZMENU.COMMSEQ!

FALSE \ flag for NO error

ELSE

." MY-MENU.INIT - Insufficient Memory!" CR

TRUE \ error flag

THEN

;

This is all that is required to define the appearance of a menu. If you want to get fancy you could
modify some of the menu items to add checkmarks, graphic images, subitems, etc. See
EZMENU.ITEM[] for details on how to access individual items.

We now need a word that will process a Menu Pick when it occurs. The Amiga will generate a
"menucode" that indicates which item was picked. By using ITEMNUM() , MENUNUM() , and
SUBNUM() you can determine exactly which item or subitem in any menu was picked. We only have
one menu and no subitems so we only need ITEMNUM().

Let's keep a flag variable that will tell us when to stop. If we hit "Quit" from the menu we can just turn
that variable on. If we hit the other two items, just output a message. Nothing fancy. That's for you to
add!

VARIABLE QUIT-NOW (time to stop?)

: DO.WHATEVER (menucode -- , act on menu item chosen)

 DUP MENUNULL =

 IF DROP (not a complete menu pick)

 ELSE (-- menucode)

 ITEMNUM() (-- item#)

 CASE

 0 OF ." Open File!" CR ENDOF

 1 OF ." Close File!" CR ENDOF

 2 OF ." Quit!" CR QUIT-NOW ON ENDOF

 ENDCASE

 THEN

;

The program will probably be receiving more than just Menu Picks. There will be Mouse Clicks,
CloseWIndow events, etc. We need to treat the differently. This next word passes Menu Picks to
DO.WHATEVER and also turns on the quit flag if the CloseWindow Gadget is hit. The information
on what menu item was picked is stored in EV-LAST-CODE by the EV.GETCLASS word. This word
is described in the section on Event Handling.

20 - 2 EZMenu System

\ Process IDCMP events.

: HANDLE.EVENT (eventclass --)

 CASE

\ Perform Menu actions

 MENUPICK

 OF EV-LAST-CODE @ DO.WHATEVER

 ENDOF

\ Set quit flag if CLOSEBOX hit.

 CLOSEWINDOW

 OF QUIT-NOW ON

 ENDOF

 ENDCASE

;

This last word only handles one event. We, therefore, need a loop that will scan for events in our
application window and pass them to HANDLE.EVENT for processing. We use GR-CURWINDOW,
which holds a pointer to the current window, to get events from. The loop will quit when the QUIT-
NOW flag is turned on.

: LOOP.MENU (-- , poll for events)

QUIT-NOW OFF

BEGIN

\ wait for an event so we don't tie up the Amiga

GR-CURWINDOW @ EV.WAIT

\ Check for events in the current window.

GR-CURWINDOW @ EV.GETCLASS ?DUP

IF HANDLE.EVENT

THEN

QUIT-NOW @

UNTIL

;

Now we just need to tie all this together. We start by initializing graphics and opening a window. I
then initialize the menu and attach it to our window using SetMenuStrip(). When I terminate I detach
the menu with ClearMenuStrip() and also free the memory declared by EZMENU.ALLOC. I then run
the whole thing from the AMENU word. I have found that this style of organizing a program, with a
clear INIT and TERM helps reduce bugs and makes for more readable code. Note how the error
codes from GR.OPENCURW and MY-MENU.INIT propagate up to the highest level.

NEWWINDOW MYNW

: AMENU.INIT (-- error? , set everything up)

TRUE \ set default error return

GR.INIT

MYNW NEWWINDOW.SETUP

MYNW GR.OPENCURW \ returns &window if successful

IF

EZMenu System 20 - 3

\ Initialize menu and attach to window.

MY-MENU.INIT 0=

IF

GR-CURWINDOW @ MY-MENU SETMENUSTRIP()

DROP FALSE \ replace TRUE since no error

THEN

THEN

;

: AMENU.TERM (-- , clean up menus and close window.)

GR-CURWINDOW @ ?DUP

IF

CLEARMENUSTRIP()

THEN

MY-MENU EZMENU.FREE

GR.CLOSECURW

GR.TERM

;

: AMENU (-- , do it all)

AMENU.INIT 0= \ Everything OK?

IF

LOOP.MENU

THEN

AMENU.TERM

;

cr ." Enter: AMENU to see demo." cr

I like to close my program files with a reminder of what to enter to run the program.

EZMenu Glossary

For the following words, the parameter 'ezmenu' refers to the address of an EZMenu structure. All of
the addresses passed to and received from these routines are JForth relative addresses unless otherwise
specified. All numbering is zero based. The first MenuItem, therefore, has an item# of 0. For the
following examples, assume that you have created two menus, as follows:

EZMENU MAINMENU

EZMENU EDITMENU

EZMENU (<name> --input-- , Create an EZMenu structure.)

EZMENU.ALLOC? (#items ezmenu -- &items | 0)

Allocate memory needed for the MenuItems, the Intuitext items, and the CFA array. The first
MenuItem is then linked to the Menu. If any of the allocations fail, a zero is returned. Otherwise the
address of the items is returned. You should check the return value before proceeding with any other
EZMENU calls.

\ Allocate space for 6 menu items.

6 MAINMENU EZMENU.ALLOC? .

EZMENU.CFA[] (item# &ezmenu -- &cfa, Address of cfa)

The EZMenu system maintains an array of CFAs associated with each menu. A CFA is Forths
equivalent to 'C's pointer to a function. The array is initially filled with the CFA of NOOP. You
can use EZMENU.EXEC to execute the appropriate word after a menupick. The CFA of a word can

20 - 4 EZMenu System

be obtained by "ticking" a word with the word ' . Any word's CFA can be placed in this array as
long as it doesn't take from or leave anything on the stack.

\ Set the CFA for menu item 3

: ACT3 (-- , No parameters allowed.)

 ." Action 3" CR

;

 ' ACT3 3 EZMENU.CFA[] (get address) ! (store)

EZMENU.COMMSEQ! (char item# &ezmenu -- , Set command key.)

You can specify that a menu item be 'picked' by hitting the right Amiga key and a special character
together. This provides a handy shortcut to a menu action.

\ Set Command Sequence key to 'W'.

ASCII W 3 MAINMENU EZMENU.COMMSEQ!

EZMENU.EXCLUDE! (mask item# &ezmenu -- , set auto-exclusion)

Selecting one MenuItem can automatically cause others to become unchecked. See the Intuition
Manual, page 6-6, for details. Note that this word also sets the CHECKIT flag.

EZMENU.EXEC (menucode menustrip -- , run menuitem's action)

The MENUCODE is obtained from Intuition. It is placed in the JForth variable EV-LAST-CODE
by a call to EV.GETCLASS . The menustrip is the same as the address of the first EZMenu in the
list.

EZMENU.FREE (&ezmenu -- , Free memory from EZMENU.ALLOC)

EZMENU.ITEM[] (item# &ezmenu -- &item , item address)

If you want to modify a MenuItem structure for special handling, use this word to obtain it's address.

EZMENU.TEXT[] (item# &ezmenu -- &intuitext , text address)

If you want to modify a MenuItem's associated IntuiText structure, use this word to obtain it's
address.

EZMENU.TEXT! (text0 item# &ezmenu -- , Set text for MenuItem)

The text must be a NUL terminated string such as that created by 0" . (That character in front of the
quote is a zero. In some fonts this is not obvious.)

\ Set menu item text.

0" Write" 3 MAINMENU EZMENU.TEXT!

EZMENU.SET.FLAG (flag item# &ezmenu -- , OR flag with existing)

You can set your own bits in the flags member of a MenuItem structure with this word.

\ Put checkmark beside item# 2 .

CHECKED 2 MAINMENU EZMENU.SET.FLAG

EZMENU.SETUP (name0 menu# &ezmenu -- ,Set default values)

This word initializes the values in the Menu, MenuItem, and IntuiText structures associated with an
EZMenu. It then links together all the pieces for Intuition to use. It must be executed after
EZMENU.ALLOC and before any calls to EZMENU.TEXT! , EZMENU.SET.FLAG,
EZMENU.COMMSEQ! , etc. The first parameter is a NUL terminated string that is the name for the
menu. The second parameter is the menu's intended position in the MenuStrip. Remember the first
menu is number 0. You may want to change the default settings before calling this routine. See
below.

EZMenu System 20 - 5

EZMENU.SUBMENU! (&submenu item# &ezmenu --)

Set submenu for this item. The example in JD:DEMO_MENUS uses submenus.

EZSUBMENU.SETUP (&ezmenu -- , set defaults and links)

EZMENU.SETITEM (0name cfa char|0 item# &ezmenu --)

Sets the name, cfa and command character for a menu item. Provided for convenience.

EZMenu Default Settings

The EZMenu system uses default settings for many of the Menu and Menuitem parameters. These are
kept in variables that you can change before calling the EZMenu routines.

INTUITEXT-DEFLEFT (--- addr ,default left edge of IntuiText item)

MENU-DEFLEFT (--- addr , default left edge of a menu)

MENU-DEFWIDTH (--- addr , default width of a menu)

MENUITEM-DEFLEFT (--- addr , default left edge of a menu item)

MENUITEM-DEFWIDTH (-- addr , default width of a menu item)

Low Level Menu Support

The EZMenu system uses some of these words to perform it's functions. Several of these words will
need to be called by your application directly.

The following three words are used by EZMENU.SETUP to initialize the Amiga structures needed to
use menus.

INTUITEXT.SETUP (&intuitext -- , Set defaults for IntuiText)

ITEMNUM() (menucode -- item# , parse code from event handler)

MENU.LINKTO (menu1 menu2 -- , Make menu2 follow menu1)

A menustrip can be built by linking a number of menus together into a linked list.

MENU.MIS># (subitem# item# menu# -- menunum , Calc MENUNUM)

Many Amiga routines use this compounded menu number.

MENU.NTH (N &menustrip -- &Nth_Menu , Traverse Menustrip)

Follows links in menustrip's linked list to find Nth menu.

MENU.SETUP (name0 menu# &menu -- , Set defaults for Menu)

See EZMENU.SETUP for description of parameters.

MENUITEM.SETUP (item# &menuitem -- , Set defaults for MenuItem)

MENUNUM() (menucode -- menu# , parse code from event handler)

SUBNUM() (menucode -- subitem# , parse code from event handler)

The following words make calls to the Intuition library.

20 - 6 EZMenu System

SetMenuStrip() (&window &menustrip -- , Attach menus to window)

The menustrip is the address of the first menu in the linked list.

ClearMenuStrip() (&window -- , Remove the menus from a window.)

OnMenu() (window menunum -- , Enable part of menu)

These routines are used when a menu is currently attached to a window. The menunum can be
created using MENU.MIS># .

OffMenu() (window menunum -- , Disable part of menu)

EZMenu System 20 - 7

