Chapter 18
Amiga Libraries and Structures

The Amigaisatreasure chest full of wonderful tools: high speed color graphics, pull down menus,
speech devices, powerful system libraries. This section of the manual tells you how to use JForth to
open that treasure chest. We will describe how to call Amiga Library routines and how to use Amiga
structures. We will then describe some of the special tools we have provided to make this easier.

Amiga Libraries - Tutorial

The Amiga system software is organized into libraries that can be used by any program. If you want to
open awindow, read afile, or draw arectangle you need to cal alibrary routine to do this. The most
often used libraries are DOS, which handles files and processes, GRAPHICS, which handles drawing
lines, images, text, etc., INTUITION, which is used to control windows, screens, menus and gadgets,
etc., and EXEC which controls the guts of the machine.

Let's start by calling a DOS routine that waits for agiven time. Before we call any library routine we
must first OPEN that library. Enter:

DCS?
Thiswill open the DOS library. If it is aready open then nothing will happen. (JForth aways opens

the DOS and EXEC libraries when it starts up but it doesn't hurt to call thisagain.) Any library that is
known to JForth can be opened by calling asimilar word, eg. GRAPHICS? or INTUITION?.

We now need to know what arguments, or parameters, this function takes. We should look thisup in
the DOS Developers Manual to find out everything about this routine. But if you just want to see the
argument list you can use ARGS to look them up.

ARGS DOS_LI B DELAY

ARGS will search through the "FD" files which contain information about the libraries. It printsthe
argument list and its offset in the library. The offset is handy for assembly language programmers. If
the Amiga asks you to insert the disk "FD:" don't worry. It just means that you forgot to execute the
ASSIGNSfile. Thisfiletells JForth what directory to find other filesin. If you get this message, enter
in the CL1 window:

EXECUTE JFORTH: ASSI GNS
then hit the "Retry" button on the requestor.

ARGS will tell you that the Delay function takes one argument, the TIMEOUT value. If welook in
the manual we will discover that thisis expressed in 1/50ths of a second. We will aso discover that it
does not return avalue. Routines that do not return avaue are called "VOID". Now that we know
what we are calling, let'swrite aword that calls Delay.
Delay() (tineout -- , delay for tinmeout/50 seconds)
CALLVO D DOS_LI B DELAY

Notice that we put two parentheses at the end of the word name. Thisis a JForth convention that
indicates we are calling an Amiga library routine. The word CALLVOID word looks up the
information about DELAY just like ARGS did. Then it builds the code necessary to call that routine.
We can use the JForth word CALL for routines that do return avalue. Now let'stest our word.

150 DELAY()

This should cause a delay of about three seconds. Pretty exciting? Don't worry. Before long you will
be opening windows and doing graphics.

Amiga Libraries and Structures 18-1

Passing Addresses to Library Routines

JForth uses what are called relative addresses. All the Forth words like @ and !, or variables, use an
offset from the base of the JForth dictionary. Thisis so that the addresses will be the same every time
you run JForth even though the actual Amiga addresses may be different. This greatly simplifies most
programming tasks. If you are passing addresses to Amigalibrary routines, however, you will need to
convert them to absolute 68000 addresses. Luckily, thisis very easy to do using >ABS which converts
arelative JForth address to a 68000 absolute address. Enter:
" DUP .HEX (relative address of DUP code)
' DUP >ABS .HEX (actual absolute address)
Let's call an Amiga routine that requires some absolute addresses. Intuition has a function called
CurrentTime that will set two variables to the current time. We will need to pass the absolute
addresses of those two variables. Enter:
VARl ABLE SECONDS
VARI ABLE M CROS
CurrentTinme() (addr-seconds addr-micros --)
>ABS SWAP >ABS SWAP (convert both addresses)
CALLVO D | NTUI TI ON_LI B CURRENTTI ME

PRINT. TIME (-- seconds micros)
SECONDS M CRCS Current Ti ne()
." Seconds = " SECONDS @.

", Mcros =" MCRCS @. CR

INTU TION? (open library!)
PRINT. TIME (test it)
Notice how the same word that calls the library routine does the address conversion. That way you

only have to pass the normal relative addresses. Whenever possible, try to only pass relative addresses
between words.

Now that you know how this works, | will show you a shortcut. If you enter

ARGS | NTUI TI ON_LI B CURRENTTI ME
you will see that the arguments are passed in AO and A1. These are Address registers, as opposed to
Dataregisterslike DO or D1. We can use a special form of CALL that will automatically convert any
argument that goes into an address register. Thisworks fine with the GRAPHICS, EXEC,
INTUITION and most other libraries. Unfortunately DOS uses data registers to pass addresses (1) so
we have to do the >ABS ourselves with DOS.
Here is another way of defining CurrentTime() using this feature:

CurrentTime() (addr-seconds addr-micros --)
CALLVO D>ABS | NTU TI ON_LI B CURRENTTI ME

Thiswill work even with amix of address and data arguments. Look at:

ARGS GRAPHICS_LI B DRAW

We have been writing simple routines whose only function isto call an Amiga Library routine. You
could, of course, use CALL in any colon definition no matter how large. We recommend, however,
that you use these small "glue" routines to save space and produce more modular code.

Getting Values from Library Routines

Most Amiga Library routines return a value to the calling program. If, for example, you open a
window, the Intuition Library will return to you a pointer to awindow structure. Y ou can use this
pointer to get information about the window or to perform graphics operations on thiswindow. This

18-2 Amiga Libraries and Structures

pointer will be returned in absolute mode. Y ou should convert thisto relative mode before passing it
on.

Y ou could use >REL to preform this conversion. A problem can occur, however, if Intuition passes
you back aNULL, or zero, pointer. This can happen if Intuition failsto open awindow. If you used
>REL the NULL would get converted to a nonzero value. Y ou would then be unable to check the
pointer to seeif itisvalid. In thiscase, therefore, we should use IF>REL for our conversion. It will
only convert an addressiif it isnonzero. Hereis how you would call the OpenWindow routine.
OpenW ndow() (newwi ndow -- w ndow)
CALL>ABS | NTUI TI ON_LI B OPENW NDOW
| F=>REL (convert w ndow address) ;

(Thereis an example of the use of this routine in the JForth Graphics toolbox that we will study later.)

Accessing the Amiga Libraries - Reference

With the installed JForth word set, all the standard Amiga 2.0 libraries are accessible, along with afew
more;

arp asl batt mem
battcl ock clist commodities
consol e cstrings di sk

di skf ont dos exec expansi on
gadt ool s graphi cs i con

i ffparse i nput intuition
keymap | ayers mat hf f p

mat hi eeedoubt r ans mat hi eeesi ngbas mat hi eeesi ngtrans
mat ht r ans m sc pot go
randrive rexxsyslib r onboot
timer transl at or utility

wor kbench

Opening Libraries

The JForth-recommended method for opening alibrary isto state the name immediately followed by a
question-mark. For example, at the startup of a program which will call both the graphics and intuition
libraries, the programmer need only state'GRAPHICS? and 'INTUITION?. These words will open
thelibrary only once, regardless of how many timesthey are called.

MY- PROGRAM (--)

CGRAPHI CS? \ opens graphics.library if needed
...ny-graphics-words... \ run application
- GRAPHI CS ; \ close the graphics.library

JForth opens two of these libraries for you, EXEC and DOS. These libraries are ALWAY S open when
the JForth development environment is up. While not an error, it is a null operation to execute either
EXEC?, -EXEC, DOS? or -DOS. They are provided only for compatibility reasons and the
surrounding JForth environment will actually manage them.

Y our program may specify a particular version of alibrary by storing the desired version number in the
user variable called LIBVERSION. Otherwise, JForth will not care which version is found; any will
suffice. Notethat, if version number IS important to you, it will have to be stated just prior to each
library open operation. Thisis because the variable LIBVERSION is automatically set to zero after
each library is opened.

36 LIBVERSION ! GRAPHI CS?

36 LIBVERSI ON ! | NTUI TI ON?

Amiga Libraries and Structures 18-3

The words that open libraries, such as GRAPHICS?, provide two types of behavior on an error; either
to execute QUIT or not (in a CLONEd application, QUIT will exit the program) or not. Seethe
section Library Open Verification ahead for details.

Note: When alibrary is opened, it's absolute address is stored in the word called "name_LIB". For
example, if you opened the Intuition library, the Intuition library pointer would be stored in
INTUITION_LIB . Thispointer pointsto INTUITIONBASE. To get the address of
INTUITIONBASE, enter:

I NTUI TI ON?
INTU TION_LIB @>REL (get relative address of | NTU TlI ONBASE)

The same technique can be used to get EXECBASE or other useful library bases.
Closing Libraries.

Closing librariesis similarly easy: library name preceded by a'minus’ sign. The above example
application, at termination, can cleanup the two libraries by executing:

- GRAPHI CS

-1 NTUI TI ON

Note that the -NAME' words unconditionally close the library, They should, therefore, only be used
when an application terminates.

The 'exec’ and 'dos libs cannot be affected by these words. JForth maintains these libraries; the words
'-DOS and '-EXEC' are provided for compatibility reasons and have no code.

Calling Amiga Libraries.

Accessing alibrary is made easy by JForths 'call compiler'. The format for a system call is asfollows:
argl arg2 ... arg(N CALL i bname_LI B FunctionNane

ARGs = the arguments in the sanme order as in the Aniga
techni cal reference nanual s.

"Cal |l = invokes the 'call-conpiler’
"libname_LIB" = name of library followed by ' _LIB
(1 oner case ok)
Functi onNane = standard, full-text, Amiga name for the
function.

For example, the dos function 'Seek' islisted in the AmigaDOS Developer's Manual as follows:
Seek(file, position, node)
In JForth, atypical SEEK to the beginning of afile might appear:
REWND.IT (-- prev-position, rewind ny file)
(file position node)
MYFI LE @ 0 OFFSET_BEG NNI NG call dos_lib seek ;

CALL builds al the necessary code to access the library. 1t 1ooks up in the "FD:" filesto find out
which parameters are passed, then calculates the offset of the routine in the library. It then builds the
code necessary to pull the parameters off of the stack, place them in the proper 68000 registers and call
theroutine. CALL may only be used during compilation, for example, inside of a colon definition. It
cannot be used interactively from the keyboard.

CALL will normally return the contents of register DO on the stack. Thisisthe way values are
normally returned from the Amigalibraries. Some library functions, however, do not return avalue,
and some return two. Others even return special values in the Status Register. JForth provides words
that instruct CALL to compile slightly different code for these situations.

18 -4 Amiga Libraries and Structures

Library Open Verification

VERI FY-LIBS (-- var-addr , | MPORTANT !!I!111

If thisvariable is TRUE (which it is, by default), JForth will compile a check before every new
library call to make sure that the library is open. This can save you from crashing when you are first
debugging a program and might forget to open alibrary. Once you have your program debugged
and are opening the necessary libraries properly, you should set this variable to FALSE and
recompile. Since your program will no longer be making these redundant checks, it will run faster.
Note: CLONE will automatically remove these checks when generating a target image.

VERI FY-LIBS OFF (then reconpile!)

LIBQUT (-- var-addr , JForth 3.0 and later)

By default, LIB_QUIT isset TRUE. Thiswill cause QUIT to be executed if an error occursinside a
library-opening word such as GRAPHICS?. (Note that within a CLONEd standalone program,
QUIT will cause the application to exit).

To prevent this, the program should set LIB_QUIT to false before every call to a XXX? word which
will open alibrary. For example...

LIB QUT off I NTUI Tl ON?

LIB QUT off GRAPHI CS?
To check if the library opened successfully, the program may check the contents of the XXX_LIB
variable for anon-zero value. For example...

LIB QUT off | CON?

ICONLIB@ (-- lib-pointer / 0) \ will be Oif error occured

CALL modifiers

When these words are used before CALL, they will affect the way that the Amiga Library call is
compiled. These modifiers only affect the next CALL then they are turned off. In actuality these
words are seldom used. We have provided shortcut words that are described in the next section. These
modifiers are mainly used if you need several together, for example, RET:DOUBLE and RET:SR.

SAMPLECALL (paraneters... -- double sr)
RET: DOUBLE RET: SR CALL MATH EEEDOUBBAS_LI B | EEEDPMUl
AREGS>ABS (-- , tell CALL to convert addresses with >ABS)

When CALL looks up the parametersin the FD files, it knows which ones are addresses because
they get put into addressregisters. CALL can therefore automatically convert these addresses from
JForth relative addressing to Amiga absolute addressing. Warning! DOS passes address in data
registers so use >ABS explicitly with DOS calls. NULL addresses are preserved.

RET: DOUBLE (-- , tell CALL to return both DO and D1)
Thisis used when you want a 64 hit result. Thisis used extensively with the double precision
floating point libraries.

RET: SR (-- , return Condition Codes from Status Register)

Some of the floating point routines pass back overflow and other flags in the Status Register. This
allows you to get those codes. Warning! Do not bypass this facility by calling MOVE-FROM-SR
because this instruction is not legal on some 680x0 processors.

RET:VOD (-- , tell CALL not to return a value)
Thiswill instruct the CALL operator to NOT compile the code to put the return value on the stack.

Amiga Libraries and Structures 18-5

CALL shortcuts

We have provided some special versions of CALL that incorporate these modifiers. These are used
more often than using the modifiers directly.

CALL (...paraneters... <name_LIB> <function> -- result)
Normal call without modifiers. Any addresses passed should have aready been converted using
>ABS.

CALL>ABS (...paraneters... <name_LIB> <function> -- result)
Just like CALL except parameters destined for address registers are converted automatically. NULL
addresses are preserved.

CALLVOD (...paraneters... <name_LIB> <function> --)

Don't return anything.

CALLVO D>ABS (...parameters... <name_LIB> <function> --)
Combination of CALL>ABSand CALLVOID .

DCALL (...paraneters... <name_LIB> <function> -- double)
The DOUBLE returned occupies 2 stack cells.

As aconvention, words that do little more than call an Amigalibrary routine should have a () suffix
placed on them. These Forth words should have the same calling sequence as the Library routine. For

example:
DELAY() (#ticks -- , delay #ticks 1/50ths second)
CALLVAO D DOS_LI B Del ay
100 DELAY()

To find out what parameters a routine expects, you can use the ARGS facility. ARGS will search the
"fd' filesand print the line that contains the parameter description.

ARGS dos_I|ib seek (prints paraneters for seek)
Adding Libraries.

The following section applies only if you wish to call a custom library, one not supplied with the
original Amiga Workbench release.

The library must be anorma Amiga Library that can be opened using OpenLibrary(). Examplesare
the ARP library, the Live video digitizer library, Bill Barton's MIDI library, and the AREXX library.
(You can aso create you own libraries. The details for this are in the Amigatechnical literature, and
beyond the scope of this discussion.)

Once you've installed your library in the Amiga OS by placing it your LIBS: directory, 'teaching'
JForth about it is easy, asillustrated in the following steps, which define anew library called
'GOODIES. Notethat thereis NO space between the ' and the'L" in this next line.

:LIBRARY GOODIES (this creates GOODI ES NAME)
(and GOODIES LIB, used in)
(the follow ng steps ...)

GOODI ES? GOODI ES_NAME GOODIES LIB LIB?

- 300Dl ES GOODI ES LI B -LIB ;
These are the operatives you will use to open your library, in the same manner as that described above

18-6 Amiga Libraries and Structures

under 'Opening Libraries.

Finally, you will have to construct a ‘function declaration' file for your new library that JForth can read
and find the calling parameters. Thisisan ASCII file that can be created with any popular editor and
should be placed in the JForth logical volume 'FD:". Y our new file should reside there, and should be
similar in format to those which are Amiga-defined; use them as a model, but note the following:

JForth does not require all of the info contained in a standard ".fd' file, so you needn't bother to build
the entire text; the only required portions are:

##bi as xx

Functionl(arglnane, arg2nane) (ar glreg/ ar g2r eg)

Functi on2(ar glnane, ar g2nane, ar g3nane) (ar glreg/ ar g2r eg/ ar g3r eqg)
The xx above equals the offset from library base for 1<t call in list.

For example...the 1st 3 required linesin the DOS _LIB.FD file are:

##bi as 30

Open(nane, access- node) (D1/ D2)

Cl ose(file)(D1)
If you were to type that file, you would see that there are more lines present; but these are all that
JForth requires.

Once you have compiled the ":Library' statement (along with the 2 opening and closing operators)
AND installed a proper ".fd' file (in the logical volume fd:) JForth will allow you to reference that
library and its routines by name.

Amiga 'C' Structure Interface

Structures in the Amiga

The Amiga uses "structures” to describe things like windows, screens, icons, fonts, bitmaps, tasks, etc.
A structure contains information about these things like width, color, type, etc. All of thisinformation
is collected in one area that can be referred to by a single address. Many of the important Amiga
routines pass these addresses as away of referring to windows, menus, etc. Accessing the features of
the Amigarequires you to be able to set and retrieve values in these structures. JForth providestools
for accessing these Amiga structures and for defining new ones of your own design.

Loading Structure Definitions from ".j" Files

The data structures that the system uses are typically defined in a set of 'C' include files whose names
endin".h". Thesefiles contain templates that describe how the datain astructureis arranged. These
files a'so contain the definitions of named constants. A 'C' program that wants to reference these data
structures includes the appropriate ".h" files. For JForth programmers, a set of equivalent files has
been created for inclusion in JForth programs. These files have namesthat end in ".j". They residein
thelogica volume"JI:". To load the structures needed for the Serial device, you would enter:

| NCLUDE JI : DEVI CES/ SERI AL. J

Loading Structure Definitions from Precompiled Modules

Most of the structures that you will need have been precompiled for fast access. They are stored in a
module file called MOD:INCLUDES.MOD on the JForth disk. To access these files you must first
define the MOD: volume by executing the JForth:ASSIGNSfile. Please do this, if you haven't
already,by entering in the CL1 window:

EXECUTE JFORTH: ASSI GNS

Now you can enter, in JForth:
GETMODULE | NCLUDES

Amiga Libraries and Structures 18-7

Thiswill link the structure definitions from the include files to your dictionary. Please see the section
on Modules for more information on how thisworks. Y ou may find that the INCLUDES module does
not have a structure that you need. Y ou can then include it as above, add it to the INCLUDES module
or make your module as described in the Modules chapter.

Using Structures

Now that the structure definitions are loaded we can make copies from the template. To create one of
these structures that you have defined, enter the name of the structure type followed by the name of the
new copy. Enter:

NewW ndow MYNW

MYNW. (print address of MYNWfor fun)

For those familiar with 'C' thefirst line is equivalent to:
STRUCT NewW ndow MYNW
This creates a NewWindow structure that is used to describe how you want Intuition to open anew
window. To see how this member was defined and the names of its members enter:
FI LE? NEWN NDOW (then hit 'y' when pronpted)
If you want awindow that is 300 pixels wide you need to set the WIDTH member of this structure.

JForth uses the naming conventions from the Assembler ".i" files so we refer to this member as
NW_WIDTH. Enter:

300 MYNW SI' NW W DTH
Theword S! looks up the offset for NW_WIDTH in the structure and adds it to the address on the
stack. It then looks up the size of the NW_WIDTH member and uses the equivalent of ! W! or C! to
store the value to that address. By using this syntax we are able to greatly optimize the referencing of

structures. (Hackers: Try using S! in asmall colon definition then use DEF to examine the code.) We
can check that we set the value correctly by entering:

MYNW S@ N\WW DTH . (should print 300)
The above two linesin 'C' would be:

MYNW wi dt h = 300;

printf ("%l", MYNWw dth);

Note: In'C' the caseis critical so we cannot use upper case like we normally do for these examples.
For actual JForth code we normally use lower case too.

Sometimes you may want to find the size of a structure so that you can allocate memory for it
dynamically. To find the size of a structure use the SIZEOF() word or use ALLOCSTRUCT.
MEMF_CLEAR
SI ZEOF() NEWN NDOW ALLOCBLOCK (allocate structure)

Making an Array of Structures

Sometimesit is desirable to have an array of structures. Suppose we want to create 10 gadgets. We
could define 10 of them with individual names but it might be more convenient to define an array of
gadgets and address them by index. The word ARRAY OF will do that for us.

10 ARRAYCOF GADGET MY- GADCETS

3 MY-GADGET . \ print address of gadget #3

Referencing Substructures

Sometimes structures contain other structures as members. To access the substructure you will need its
address. Once you have its address you can use S! and S@ as before. Y ou can find the address of any
member of astructure by using the .. word. An Intuition Screen, for example, containsits own
RastPort. Let us assume we have avariable called SCREEN-PTR that contains the relative address of
a Screen. To fetch the value of the foreground pen in its rastport we could use the following:

18 -8 Amiga Libraries and Structures

SCREEN- PTR @ (-- address-of-Screen)
SC RASTPORT (-- address-of-Screen's-RastPort)
S@RP_FGPEN . (print pen value)

In'C' that would be;

printf("%l", SCREEN PTR->Rast Port. FgPen);
Often structures will contain pointers to other structures. If it isan Amiga structure, then the pointer
will be the absolute address of that other structure. A Window, for example, contains a pointer to a
RastPort. Assume we have a Window's relative address in the variable WINDOW-PTR. Let'sfetch its
RastPort's drawing mode.

W NDOW PTR @ (-- address-of - Wndow)

S@ WD RASTPORT (fetch Rastport's Address

(automatically convert to relative)

S@ RP_DRAWMODE
Note that S@ and S! areintelligent about how they handle values. If a structure member is defined as

APTR, an address being stored into that member using S! will be converted to absolute using the
equivalent of IF>ABS.

Accessing Array Members in Structures

Some structures have members that are arrays of values. A BitMap structure, for example, contains an
array of pointersfor up to 8 individual bit planes. To reference these arrays, use .. to get the base
address of the array, then add the offset required to get to the particular member of the array. To do
this you will need to know the width of the valuesin the array. Suppose we want to fetch the address
of the third bit planein aBitMap caled MYBM. We could use the following:

MYBM .. BM PLANES (address of Oth bitplane)

2 CELLS + (offset to 3rd bit plane) @

Examining Structures with DST

When you are working with structures, it is handy to be able to see all of the valuesin it at once.
JForth provides atool that makes this easy. Enter:

| NCLUDE? DST JU: DUMP_STRUCT

Thisisahandy debugging tool. Enter:

NEWA NDOW MYNW (unl ess al ready defined)

120 MYNW S!' NW W DTH

MYNW DST NEVWN NDOW
DST will use the structure templ ate whose name follows to dump the contents of a structure whose
addressis on the stack. Thefirst column is the values of the members. The middle column tells you
the width of the member in bytes and whether it is Signed or Unsigned. If amember issigned, then 16
and 8 bit members will be sign extended into a 32 bit number when placed on the stack. Try putting
the last line above in aword called DMY NW then experiment with setting members of MYNW then
dumping them out.

Defining Your Own Structures

JForth provides tools for you to define your own structure. The syntax isvery similar to'C'. A
possible 'C' structure and the corresponding JForth structure are shown below to give you an idea of
how they relate.
/[* A'C structure. */
struct datrec {
ushort howrany, *sval _ptr;
| ong bi gval ;

Amiga Libraries and Structures 18-9

struct list *alist;
struct rastport nyrastport;
aptr sone_nem
short tabl e[32];
s
In JForth, we should add a prefix to make the member names unique. Let'suse"DR_". The same
structure in JForth would be defined as:
: STRUCT DATREC (Start defining a structure)
USHORT DR_HOAWVANY
APTR DR _SVAL_PTR (pointer to a SHORT)
LONG DR _BI GVAL
APTR DR ALI ST (only a pointer)
(nenber is a conplete structure)
STRUCT RASTPORT DR_MYRASTPORT
APTR DR_SOVEMEM
32 2 * BYTES DR _TABLE (make room for array)
; STRUCT (Termnate definition)

For more examples of how to define your own structures, look at the ".h" filesin JI: and compare them
to the 'C' includes.

Structure Glossary

The words to support the use of structuresarein JU:C_STRUCT and JU:MEMBER. They are loaded
as part of the normal JForth image.

Structure Accessing Words

By using S@ and S! instead of ..@ and ..!, you can almost completely ignore relative versus absolute
addressing. It will be taken care of for you automatically.

(struct-addr <nenber-nane> -- nenber-addr)
Calculate the address of a structure member by adding an offset to the base of the structure.

.@ (struct-addr <nenber-nane> -- value)

Fetch the value stored in a structure member. Thiswill automatically use the appropriate @ word
for that member. Hereis atable of the equivalent @ operator used for various member types:

BYTE uses C@

SHORT uses W@

LONG uses @

RPTR uses @

APTR uses @ (see S@)
The member must be either 1,2 or 4 bytes wide for thisto work. For members that are bigger than 4
bytes, eg. an array, use acombination of " .. " and the normal @ and ! words. With this system, you
no longer have to worry about the size of your member, just how you useit! If the member is
defined as signed BY TE or SHORT then it will be sign extended to 32 bits. Thisallows you to store
negative numbersin 8 or 16 bit members. See B->Sin the main glossary for more information about
sign extension.

A (value struct_addr <nenber-nane> --)

Store value into structure member. Theword ! , W! , or C! will be used depending on the width of
the member asin..@.

18-10 Amiga Libraries and Structures

S@ (struct-addr <menber-nane> -- val ue)
Equivalent to ..@ except APTR members are converted to relative. The following two lines are thus
functionally equivalent:
MW.. @NWTitle |F>REL
MW S@NWTitle

SI' (value struct_addr <nenber-name> --)

Equivalent to ..! except APTR members are converted to absolute. The following two lines are thus
functionally equivalent:

0" Plots” IF>ABS M\W..! NWTitle

0" Plots” MN\WS@NWTitle

SI GNED- MEMBERS (-- addr , variable to control conpilation)

If thisflag is TRUE (the default) then when ..@ is compiled it will distinguish between SIGNED
and UNSIGNED members. Version 1.2 treated all members as UNSIGNED. If you are having a
compatibility problem with 1.2 involving structures, try setting this variable to FALSE and
recompile your application.

Structure Defining Words

:STRUCT (<name> -- , Start defining a structure.)
; STRUCT (-- , Terminate a structure definition.)
APTR (<nane> -- , Am ga absolute pointer)

This member must be an absolute address when used by the Amiga. If you use S@ and S!, then
addresses will be automatically be converted between relative(JForth) and absolute(Amiga) as
needed.

ARRAYOF (n <structure> <nane> --)

Allocate an array in the dictionary with the given name that has room for N of the specified
structures. The name will take an index and return an addressjust like ARRAY .

20 ARRAYOF GADGET M- GADGETS
3 MY-GADGET . \ print address of 3# gadget
ALLOCSTRUCT (<structure> -- addr-structure | 0)
Dynamically allocate a structure from memory. This address must eventually be freed using
FREEBLOCK.
BYTE (<name> -- , Define a SIGNED 8 bit nenber)

Y ou do not have to worry about word alignment of subsequent members. SHORT and LONG will
automatically place themselves at aword boundary after aBY TE member. Thisistheway 'C' does
it. In assembly you have to put in dummy bytes sometimes to avoid address errors.

BYTES (#bytes <nane> -- , define nmultibyte nenber)

Thisisused for defining the other member types. LONG isdefined as" 4 BYTES" . Arrayscan be
put in a structure by multiplying the width of the array units by the number of units. To make a
structure member that is 10 LONG words, use:

10 4 * BYTES MY_LARRAY
LONG (<name> -- , define a 32 bit menber)

RPTR (<nane> --
A pointer member that contains a JForth relative address. Thiswill bot be converted by S@ or S!.

, define a relative pointer)

Amiga Libraries and Structures 18-11

SHORT (<name> -- , define a SIG\NED 16 bit menber)
UBYTE (<name> -- |, define an UNSIGNED 8 bit nenber)
USHORT (<nanme> -- , define an UNSIGNED 16 bit menber)

STRUCT (<struct-type> <nane> , structure as nenber)

Define a structure member that is another type of structure. JForth will look up how big that
structure is and make room for the right number of bytes.

Member UNIONs

A 'C' gtructure sometimes has several members that occupy the same memory space. These members
are said to be part of aUNION. These are useful when you want to use the same part of astructure
for different purposes. Let's suppose that you are passing a structure that contains a type field and then
datathat varies with the type. With one type, you want to passan X,Y pair as SHORT values. With
the other type you want to pass asingle 32 bit address. Y ou could do this by creating a structure like
the following:
\ Create flexible structure.
: STRUCT FLEXDAT
SHORT DATA_TYPE \ O for X Y, 1 for PTR
UNI O\{ (Start union)
SHORT XPCOS
SHORT YPCS
} UNI ON{
\ Has sane offset as xpos, but is 32 bits wide.
APTR DATA_PTR
} UNI ON
LONG MORE_DATA
; STRUCT

REPORT. DATA (addr-flexdat -- , Report appropriate data.)
DUP S@ DATA TYPE 0 = (check type)
IF DUP S@ XPCS ." X =" .
DUP S@YPOS ." , Y =" . cr

ELSE DUP S@ DATA PTR (get pointer to data)
@(get actual data) ." Data =" . cr

THEN

S@ MORE _DATA ." nore data =" . cr

FLEXDAT FD-1

HEX 01230092 FD-1 ..! DATA_PTR
0 FD-1 ..! DATA TYPE

REPORT. DATA

1 FD-1 ..! DATA_TYPE

REPORT. DATA

In the preceding example, XPOS and Y POS occupy the same position in the structure as DATA_PTR
does. If the parts of a union are not the same size, then the size of the largest part will be used.
Subsequently defined members will be after that largest part. The following words must always be
used in the given order:

18-12 Amiga Libraries and Structures

UNI ON\{ (-- old-offset new offset)
Start first half of aunion.

JUNFON{ (ol d-of fset new offset -- ol d-offset max-offset)

Mark next part of union. Reset offset in structure so that subsequently defined members will overlap
previously defined members.

JUNFON (offset2 --)
Terminates union.

Y ou don't have to worry about these offsets. They are used for communication between the UNION
words and can beignored. Just be careful that you don't put other stuff on the stack that might
interfere with these.

Addressing Considerations - Important!!!

JForth uses addresses that are relative to the base of the JForth kernel. This greatly simplifiesthe
usage of JForth because dictionary addresses don't change between successive runs for JForth. One
advantage is that you can store JForth dictionary addressesin variables, do a SAVE-FORTH, rerun
your code and those addresses are still valid.

The Amiga, however, must use absolute addresses to perform itswork. Thisimplies that you may only
pass absolute addresses to its library routines. Y ou must also use absolute addresses when setting a
pointer in astructure that the Amigawill use. Word like CALL>ABS, S@ and S! help keep track of
when these conversions are needed and do them for you. Itisrare, therefore, to have to worry about
thisissue. It isimportant, however, to understand it so that you can handle unusual situations.

Suppose that you want to place a pointer to a null terminated string inside a NewWindow structure
(which, of course, is being prepared for AmigaDOS to process). Theword 0" will return arelative
address. Y ou must convert this to absolute by using >ABS before placing it in the structure. (S
automatically converts the relative address to absolute; if we use ..! to write the value, we will haveto
manually convert it using >ABS).

Some Amiga routines use the NULL value for an address to indicate an error, or aspecial condition. If
you use >ABS or >REL onaNULL itisno longer NULL . For these cases you should use IF>REL
and IF>ABSto preserve NULL . These are simply defined as:

:IF>REL DUPIF>REL THEN;

Hereis an example of using >ABS and |F>REL
| NCLUDE? NEWA NDOW SETUP JU: AM GA GRAPH
\ Make an instance of a NewwW ndow structure.
NEWN NDOW | DEALW NDOW
| DEALW NDOW NEWN NDOW SETUP (Set default val ues)

NAMEGOPEN (-- wi ndow , Nane the w ndow and open it.)
0" WORK WNDOW >ABS (convert address)
| DEALWNDOW ..! NWTITLE (store in structure)
| DEALW NDOW >ABS (Convert for Amiga call)
CALL | NTUI TI ON_LI B OPENW NDOW
\ Convert absolute wi ndow address to relative for JForth.
| F>REL (preserve NULL) ;

CHECK. W NDOW (wi ndow -- , Check wi ndow pointer <> NULL)
NOT I F ." Wndow not opened!!" ABORT THEN

Amiga Libraries and Structures 18-13

NANME&OPEN \ Get relative address of open w ndow
DUP CHECK. W NDOW

.. @WD_RPORT \ Fetch absol ute address of RastPort
| F>REL \ convert to relative
..@rp_FgPen . \ print pen color

The absolute address of the RastPort can be passed directly to Amiga graphics routines. If you want to
access members of this structure using JForth, you must first convert its address to relative.

Note that in the above example we could have ailmost entirely avoided having to consider absolute
versus relative by using S! and CALL>ABS. | say “almost” because we would still have to convert
any address returned by the Amiga using IF>REL just like at the end of NAME& OPEN.

Asageneral guideline, when passing addresses between JForth words, pass RELATIVE addresses.
Do any required conversion to or from absolute, inside your words, before interfacing with the Amiga.

H2J - Convert "xx.h" to "xx.J"

H2Jis handy if you want to interface to an Amiga Library that has an associated ".h" file. An example
might be the A-Squared Live library or the ARP library. The".h" file will contain the definitions of
constants and structures to be used with the Library. To use the Library from JForth you will need a

J" file containing JForth style structure and constant definitions.

When we developed JForth 1.2, we needed something that would convert the Amigainclude files.
Thus H2J was born.

Y ou can either use the Cloned version of H2J or compile it and use it directly from J~orth. To compile
H2J, enter:
| NCLUDE JA: H2J. f
Thiswill load ODE and whatever elseit needs.
H2J takes two filenames, an input and an output filename. Y ou may use full pathnames.
H2J infile outfile
To convert newlib.h to JForth style, enter:
H2J newib.h newib.j

H2J will prompt you at various times for one of two things. When it encounters anew structure
definition, it will ask you to enter a prefix to add to the member names to make them unique. Like
Assembly, Forth requires you to use unique names for the structure members. For a Window structure,
for example, weuse "wd ". If the structure members already has a prefix, just hit return.

H2J will also ask you to verify it's conversion if it encounters an unusually tricky line. It isusually
correct so unless you know it iswrong, just hit return. If it iswrong, type in the line the way it should
be.

Don't panic if some little thing goeswrong. Y ou can always go back and edit the file. We find that
H2Jwill convert about 80% of the files completely. The other 20% will require minor tweaking.

18- 14 Amiga Libraries and Structures

