
Chapter 14
68000 Assembly

JForth and 68000 Assembly Language

JForth offers an extensive set of tools for operating at the assembly language level. These include:

1. The JForth 68000 Reverse Polish Notation (RPN) Assembler

2. The JForth 68000 Motorola-Style (Forward-Parsing) Assembler

3. The JForth 68000 Disassembler.

This chapter includes documentation for each; some knowledge of 68000 assembly language topics is
assumed; for additional technical information on the 68000, refer to a Motorola 680xx Programmers
Reference Manual.

JForth Register Utilization

To write successful assembly language programs, a basic understanding of how JForth uses the CPU
registers is necessary. This includes which registers are available for general use, and how to push
numbers onto the data stack and pop them off.

7 CPU registers are available for general use by the programmer. These include D0, D1, D2, D3, D4,
A0 and A1. These may be altered at will, but are not preserved across calls to other JForth words, so
relevant registers should be saved and restored if you do so.

JForth requires the remaining 9 registers for itself; these are either unavailable for use by the
programmer, or useable only in prescribed ways (such as pushing numbers onto the stack and popping
them off).

The following chart describes the JForth CPU register utilization:

Register JForth Name Free to Use? Used in JForth as:

 D0 -- Yes --

 D1 -- Yes --

 D2 -- Yes --

 D3 -- Yes --

 D4 -- Yes --

 D5 ILOOP No F83 Loop Index #1

 D6 JLOOP No F83 Loop Index #2

 D7 TOS No Top of Stack

 A0 TEMP0 Yes --

 A1 TEMP1 Yes --

 A2 LOC No Pointer to LOCAL stack frame

 A3 +64K No Pointer to relative addr 64K

 A4 ORG No Pointer to relative addr 0

 A5 UP No Pointer to base of User Vars

 A6 DSP No Pointer to 2nd data stack item

 A7 RP No Return Stack/System Stack

68000 Assembly 14 - 1

Note that JForth provides alternate names for the reserved registers that are more descriptive of their
specific functions. These are recognized by both assemblers, and may be optionally included in the
output of the disassembler. See each respective section for additional information on register names.

JForth caches the topmost data stack item in the CPU register D7, also named TOS (Top-Of-Stack).
The second item on the stack (as well as any others) is stored on an actual stack in memory and is
pointed to by register A6, or DSP (Data-Stack-Pointer). Because of this arrangement, pushing a
number on the data stack is a two-step process:

1. Move the contents of the TOS register out to the data stack, adjusting DSP value to reflect a new
element.

2. Load the new number into TOS.

The process of popping a number off of the stack is even easier, requiring only one step:

1. Move what DSP is pointing to into the TOS register, adjusting DSP value to reflect 1 less element.

Examples of how to do this are given in each assembler section; for now, remember that these
operations involve the TOS register (D7) and the DSP register (A6).

One other reserved register can be useful to the programmer, but is ONLY READ FROM, and NEVER
CHANGED! This is register A4, also called the ORG register, and contains an absolute pointer to the
beginning of the JForth image, the address that JForth considers 0, relative to itself. The value of ORG
is often added or subtracted from addresses to convert between the 'real' Amiga ones (ABSOLUTE)
and the JForth ones (RELATIVE), as in the words >ABS and >REL.

JForth 68000 Forth Style Assembler (RPN)

Compiling the RPN Assembler

Since the RPN Assembler is available as a MODULE, it is not usually required that the program be
compiled. Nonetheless, the Reverse Polish assembler can be compiled into the resident dictionary by
entering:

DETACHMODULE ASSEM

INCLUDE JF:ASM

RPN Assembler Usage

Here is an example of a simple RPN-assembled word.

CODE DOUBLE (n -- n*2 , Double top of stack.)

 TOS DN TOS DN ADD (Add TOS to itself.)

END-CODE

7 DOUBLE .

The word CODE activates the Reverse-Polish Assembler; subsequent input is interpreted in the
ASSEMBLER context. One ADD instruction follows; source operand first, destination operand
second, finally the opcode. The whole sequence ends with the END-CODE operator, which
deactivates the ASSEMBLER after installing an RTS instruction as the final 68000 directive in this
small program (ALL JForth words MUST end in an RTS). Please note that if an RTS is specifically
included as the last instruction in the word being assembled, END-CODE will NOT append another
one.

68000 Assembly 14 - 2

RPN Assembler Register Names

Since they conflict with hex numbers, the normal names for the registers (A0, D4, etc.) cannot be used
by the RPN Assembler. Instead, a convention has been adopted whereby the RPN-acceptable name is
formed as a single word, beginning with the NUMBER of the register, followed by DR for data
registers and AR for address registers. For example, 0AR represents address register 0, 4DR is data
register 4, and so on.

Additionally, all of the JForth functional names such as TOS and DSP are available.

Motorola Addressing Modes and RPN Assembler Equivalence

This table describes the various addressing modes available.

Forth address mode Motorola description

 example

DN (REG ---) d0 == data register direct

AN (REG ---) a1 == address register direct

A@ (REG ---) (a1) == address register indirect

A@+ (REG ---) (a2)+ == A@ then inc reg by size

-A@ (REG ---) -(a3) == dec by size, then A@

AN+W (AREG N---) 9(a1) == address + word indirect

AN+R+B (AREG REG BYTE---) 5(a2,d3) == addr+reg+byte indirect

ABS.W (N---) 1000 == absolute address word

ABS.L (N.LSW N.MSW---) 2000 == absolute address long

PC+W (W ---) 7(pc) == pc + word

PC+R+B (REG BYTE---) 9(pc.a2) == pc + reg + byte

(N-OR-D---) #4 == immediate data

Here are some examples of using the different addressing modes with a MOVE instruction, and the
Motorola-style equivalent.

Source Destination Opcode Motorola equiv.

0DR DN 0AR AN MOVE | MOVE.L D0,A0

0AR A@ 1AR A@+ MOVE | MOVE.L (A0),(A1)+

0AR -A@ 1AR 50 AN+W MOVE | MOVE.L -(A0),50(A1)

1AR 0DR 30 AN+R+B 100 ABS.L MOVE | MOVE.L 30(A1,D0.L),100

2000 ABS.W 50 PC+N MOVE | MOVE.L 2000,50(PC)

34 # 0DR 100 PC+R+B MOVE | MOVE.L #34,100(PC,D0.L)

RPN Assembler Support Words.

 A data-length may be specified with one of these 3 operators:

 BYTE -- declares 8 bit data-size

 WORD -- declares 16-bit data-size

 LONG -- declares 32-bit data-size (default)

 The following examples illustrate the use of the size specifiers:

 Reverse Polish Motorola

 $ 7F # 0DR DN BYTE AND AND.B #$7F,D0

 0DR DN 0AR AN WORD MOVE MOVE.W D0,A0

 0AR 0DR WORD 0 AN+R+B BYTE TST TST.B 0(A0,D0.W)

 These two words generate local labels for branching...

 MARK (---) (BR# --IN--) (create a label number)

 BR: (#br -- dest-addr #br) (post fix create a label)

68000 Assembly 14 - 3

The only difference is the manner in which they accept the argument specifying the branch location,
either PRE- or POST-FIX notation. This example illustrates both:

 CODE TEST-SIGN (n1 -- result , -1=negative 0=zero 1=positive)

 TOS DN TST (test register contents)

 2 BEQ (just leave if its zero by branching to '2')

 5 BMI (if negative, branch to 5)

 1 # TOS DN MOVEQ (positive if here, set result = 1)

 2 BRA (and exit)

 MARK 5 -1 # TOS DN MOVEQ (negative if here, set result = -1)

 2 BR: RTS

 END-CODE

Note that the numbers used to specify the branch locations need not be sequential, but each one may
only specify one location (paired only once with BR: or MARK) within the CODE/END-CODE
combination. The same numbers may again be used in the next CODE word.

You may find words in the ASM source code that are not explained in this chapter. These are JForth
Assembler INTERNAL words that should NOT be called from other programs.

Non-Standard Opcodes

Those 68000 opcodes that reference the status register (SR), user stack pointer (USP), or condition
codes register (CCR) are available in the JForth RPN Assembler as custom opcodes which accept a
single source or destination operand. Examples...

ORG TOS 0 AN+R+B MOVE-FROM-SR (move status reg to addr on stack)

$ 0f # ANDI-CCR (zero all but lower 4 bits of CCR)

The entire list follows. IMPORTANT!!! Those marked as "Privileged" should ONLY be used in
interrupt code!!!

Opcode Privileged

MOVE-TO-USP X

MOVE-FROM-USP X

MOVE-TO-SR X

MOVE-FROM-SR X

MOVE-TO-CCR

ANDI-SR X

EORI-SR X

ORI-SR X

ANDI-CCR

EORI-CCR

ORI-CCR

Standard Opcode Mnuemonics

These function according to the Motorola standard, except as noted.

LINK MOVEM MOVEP TRAP CMPM MOVEQ

RTR TRAPV RTS RTE RESET NOP STOP SWAP UNLK EXT TAS ABCD SBCD

CLR NEG NOT TST NEGX CMPI ORI ANDI SUBI ADDI EORI MOVE

AND OR SUB ADD EOR CMP MULS MULU CHK DIVS DIVU LEA SUBQ ADDQ

PEA JMP* JSR* NBCD EXG ROR ROL LSR LSL ROXR ROXL ASR ASL ADDX SUBX

Bxx** (branch on condition) DBxx** (decrement & branch on
condition)

68000 Assembly 14 - 4

BSR***

SCC SLS SCS SLT SEQ SMI SF SNE SGE SPL SGT ST SHI SVC SLE SVS

 * - Use] <name> [instead of Jxx (invokes compiler to CALL
word)

 ** - accepts a local label, for example: BNE 1$

*** - Usage: ' <wordname> BSR (forces PC-relative call)

More RPN Examples

(Demonstrate accessing a Variable)

VARIABLE MY-VAR

CODE SHIFT-MY-VAR! (N -- , Shift data in MY-VAR N times left.)

\

\ invoke compiler; generate variable address...

] MY-VAR [(-- N MY-VAR)

\

\ get a copy of N into d0...

 DSP A@ 0DR DN MOVE (-- N MY-VAR) (d0=shift count)

\

\ do the shift...

 0DR DN ORG TOS 0 AN+R+B ASL (-- N MY-VAR)

\

\ drop both numbers from the stack...

 CELL # DSP AN ADD (-- MY-VAR) (same as NIP)

 DSP A@+ TOS DN MOVE (--) (same as DROP)

END-CODE

This example demonstrates local branches, and also invoking the compiler (via] and [)to create a call
to another Forth word. Note how D0 is saved while calling EMIT.

CODE PLOT# (N -- , emit N dashes)

 TOS DN 0DR DN MOVE (keep count in D0)

 DSP A@+ TOS DN MOVE (drop count and reload TOS)

1 BR: TOS DN DSP -A@ MOVE (save TOS)

 ASCII - # TOS DN MOVEQ (load '-' character into TOS)

 0DR DN 7AR -A@ MOVE (save D0 on return stack)

] EMIT [(emit dash)

 7AR A@+ 0DR DN MOVE (restore D0)

 1 # 0DR DN SUBQ (decrement loop counter)

 1 BNE (loop until done)

END-CODE

Additional RPN Assembler Features

RPN Assembler Usage in Colon Definitions

As long as you do not use the branching operators (Bcc, DBcc, BR: and MARK), you can activate the
RPN assembler during normal compilation, as in the following example. (If you use the assembler as
a MODULE and not compiled resident in your dictionary, you need to insure the ASSEM module is
loaded via GETMODULE ASSEM for this feature).

: SUM*2 (a b -- [a+b]*2)

 + [ALSO ASSEMBLER TOS DN TOS DN LONG ADD PREVIOUS] ;

68000 Assembly 14 - 5

RPN Assembler Macros

Similarly, to do Macros in JForth RPN assembler, simply write a colon definition that has assembler
words compiled into it. (This cannot be done if you need to branch using BR: or MARK. Also, the
RPN assembler MUST be resident in the dictionary, and NOT loaded as a MODULE. See the above
section Compiling the RPN Assembler to achieve that configuration).

: M.DOUBLE [ALSO ASSEMBLER] TOS DN TOS DN ADD

 [PREVIOUS] ; IMMEDIATE

When this word is used within another definition (as follows), it will invoke the assembler to create the
ADD instruction inline.

: DOUBLE-MY-VAR (-- , double the contents of a variable MY-VAR)

 MY-VAR @ (-- my-var-data) \ get value in MY-VAR

 M.DOUBLE (-- my-var-data*2) \ compile above ADD inst inline

 MY-VAR ! (--) ; \ put it back

The RPN assembler is unique in this ability to create macros; this is not currently possible with the
Forward Assembler. Unfortunately, the disadvantage of not being able to use the RPN assembler as a
MODULE usually outweighs the benfit of this somewhat obscure feature.

The RPN Assembler as a MODULE

In JForth V1.3 and higher, the RPN Assembler may be compiled and saved as a MODULE (as is the
default for the release version, in MOD:ASSEM.MOD). The standard procedure for recompiling the
com:JForth image, JF:LOADJFORTH, automatically regenerates the .MOD file if MODULE support
is included.

When implemented as such, the CODE and ;CODE keywords will automatically load the ASSEM
module from MOD: if needed.

When the RPN Assembler is being used in module form, its directives may NOT be used to build
assembler macros, described above.

Motorola-Style (Forward-Parsing) Assembler

As many knowledgeable 68000 assembly-level programmers will admit, a non-standard reverse-polish
syntax for a Forth assembler seems an additional burden to learn, simply to program in this 'lowest-of-
levels'. While the inherent 'macro-ability' and interactivity of the RPN assembler is an important gain,
the Forward-Assembler environment features familiar Motorola formats as well as support for
'interactively' accessing elements of the JForth dictionary.

You can see additional examples of Forward Assembler usage in the files JF:HASHING,
JIFF:UNPACKING, CL:STARTJFORTH.ASM.

Please note that the Forward Assembler does not currently support the BLOCK environment; it may
only be invoked within standard ascii text files accessed with INCLUDE, or from the keyboard.

Compiling the Forward Assembler

Since the Foward Assembler is available as a MODULE, it is not usually required that the program be
compiled. Nonetheless, the Forward Assembler may be compiled into the resident dictionary by
entering:

DETACHMODULE ASSEM

INCLUDE JF:FORWARD-ASM

Forward Assembler Usage

The Forward-Assembler is invoked with the "ASM" keyword, followed by the name of the word to be
created (similar to the use of ":" when compiling a HIGH-LEVEL word). Assembly-language

68000 Assembly 14 - 6

mnemonics then follow, one statement per line.

Finally, the last line begins (and ends) with the "END-CODE" operator, terminating the assembly-
mode and resolving/verifying the just-created word. An 'RTS' instruction is automatically assembled
by this operation (ALL JForth words MUST end with RTS!) if necessary.

This is illustrated by the following simple example, called ADD2, which adds the top two items on the
stack...

ASM ADD2 (a b -- a+b)

ADD.L (A6)+,D7

END-CODE

The overall syntax adheres closely with Motorola standards; the following fields, based on character
position, are defined:

LABEL OPCODE OPERAND COMMENT (rest of line is ignored)

5$: add.l (a0)+,d0 add what A0 points to with D0

 move.l d0,d1 copy the sum into d1

 bne.s 5$ do it again if 'non-zero'

The following notes apply to each specific field...

The Forward Assembler Label Field

The first column of each line marks the beginning of the Label Field.

The first character of this field must be one of 3 things: whitespace (blank or TAB), the beginning of a
Forth comment, or begin a properly-formatted local label.

The Forward-Assembler supports the use of Motorola-style local labels. A declaration begins in
column 1, and consists of the label VALUE followed by "$:" (for example... 18$:).

Currently, only one class of instruction may operate on declared labels; those which conditionally
BRANCH on a tested condition. BEQ (branch-if-equal) and DBEQ (decrement-&-branch-until-equal)
are examples of this class.

The following illustrates a test & branch condition. Here, the tight loop will be repeated until register
D0 equals zero...

1$: subq.l #1,d0 subtract 1 from d0...

 bne 1$ if not equal to zero, branch to 1$

... <<< EXECUTION CONTINUES HERE WHEN D0 = 0 >>>

Please note that label values MUST BE UNIQUE, but only between the same ASM and END-CODE
combination. Once another ASM has begun, the values may be reused. Also, any DECIMAL value
may be used; the programmer is not restricted to using sequential values.

The Forward Assembler Opcode Field

This field contains standard Motorola-style 68000 mnemonics in either case, and, where necessary, the
size-specifying suffix .B, .W, .S, or .L.

A few JForth-specific commands are also scanned for to provide greater flexibility:

If the opcode field contains CALLCFA the next text is considered the name of a JForth word, and a
call to that word will be compiled in the most efficient manner possible (do NOT use the JSR or JMP
instruction to reference NAMED words...use CALLCFA). The following example reads two
variables, DIVIDEND and DIVISOR, calls / to divide them and leaves the result on the stack:

ASM DIV2 (-- n , divide the variables)

 callcfa DIVIDEND (-- DVNDvar)

68000 Assembly 14 - 7

 move.l 0(org,tos.l),tos (-- DVDN)

 callcfa DIVISOR (-- DVDN DVSRvar)

 callcfa @ (-- DVDN DVSR , same as move.l..)

 callcfa / (-- QUO)

END-CODE

It is possible to explicitely force a PC-relative call to be assembled to another named word as long as it
is within +-32K of the calling instruction. This is useful to build interrupt code where the ORG
register is not yet setup.

 move.l #[ascii -],d0 put a '-' character in d0

 bsr ProcessChar call some char processor routine

If the opcode field contains FORTH{, all text up to the following } character (or end-of-line) will be
sent to the JForth INTERPRETER and executed. This example invokes the compiler to create a
reference to an Amiga Library function:

 move.l tos,-(dsp) (-- prevTOS)

 move.l #$40,tos (-- $40)

 FORTH{] callvoid dos_lib Delay [} (--)

The Forward Assembler Operand Field

This field describes any operands needed by opcode. All standard Motorola-style effective address
formats are recognized, as well as a few JForth-specific patterns which are here described.

The Forward Assembler, as supplied in JForth versions 3.0 and earlier, does not directly support
references to the SR (Status Register), CCR (Condition Codes Register) or the USP (User Stack
Pointer), but access to the related RPN assembler operatives is always possible. For example...

\ Zero all but lower 4 bits of CCR...

FORTH{ ASSEMBLER $ 0f # ANDI-CCR (andi #$f,ccr) PREVIOUS
}

A special construct affords access to most JForth entities; in places where a numeric argument is
expected, the [and] characters can be used to delimit a string to be submitted to the JForth
INTERPRETer (similar to the FORTH{ operative, described above). This is useful to apply defined
data CONSTANTs, but can be used for other purposes. The following example checks if the value in
TOS is equal to a pre-defined CONSTANT (in this case, an Amiga mask describing memory):

cmp.l #[MEMF_CHIP],tos is the value in tos = mask?

Another example illustrates how this feature can also be used to pre-calculate operand 'literal' values:

move.l #[8 1024 *],tos put '8K' in TOS

A third example reads the 4th element of a 32-bit array, base address in a0, into register d0:

move.l [3 cells](a0),d0 read a0 plus 12, indirect

Any valid sequence of Forth commands may exist between the [and] characters, as long as it meets
the following criteria:

1. The expression has an overall stack diagram of (-- n1) .

2. Due to the parsing requirements of the Motorola assembly format, the text between the [and]
delimiters may NOT contain any of the following 6 characters: () , . []

NOTE: You should never use the [and] characters to generate an ADDRESS for an instruction. An
example of this would be:

move.l #[' NOOP],tos

Such code will run in the JForth dictionary, but is not compatible with the CLONE program. You can
use FORTH{ and the compiler directive ALITERAL to create code which will push an address on the

68000 Assembly 14 - 8

stack in a CLONEable way:

 FORTH{ ' NOOP] ALITERAL [}

NOTE: between the ASM and END-CODE, numbers are INTERPRETed in DECIMAL; preceed hex
numbers immediately with a $ character, for example $FFFE.

Example of Accessing Structure Members

Here is an example illustrating how to access members of an Amiga structure. Structure members
return their offset when referenced so we can use them directly between [and]. Make sure you use
the proper size MOVE. Notice the MOVE.W for the width. Notice also that we clear the high bits of
D7 first because MOVE.W onlt sets the low bits. This example also illustrates conversion between
absolute and relative addresses. This next word takes a relative window address and prints its title and
width.

ASM WINDOW.INFO (window --)

MOVE.L D7,A0 \ relative window address to A0

ADD.L ORG,A0 \ convert to absolute address

CLR.L D7 \ clear high bits of TOS

MOVE.W [WD_WIDTH],D7 ; get width in TOS

MOVE.L D7,-(DSP) \ save TOS

MOVE.L [WD_TITLE](A0),D7 ; get title in TOS

SUB.L ORG,D7 \ convert to relative for JForth

CALLCFA 0COUNT \ (-- width address count)

CALLCFA TYPE

CALLCFA SPACE

CALLCFA . \ print width

END-CODE

We can test this word by assembling it then entering:

INCLUDE JU:AMIGA_GRAPH

GR.INIT GR.OPENTEST

GR-CURWINDOW @ WINDOW.INFO

GR.CLOSECURW GR.TERM

Example of Referencing Variables from an Interrupt

If you need to reference a variable from an interrupt routine, you cannot use

CALLCFA VAR1 \ NOT legal in interrupt routines

because that assumes that the 68000 registers are setup for JForth use. In an interrupt, that will not be
true. In an interrupt you cannot use the JForth data stack, or call any word using CALLCFA, or call
any word that uses the data stack. Here is an example of referencing a VARIABLE and calling a
subroutine using legal PC relative addressing:

variable VAR1

ASM INCVAR \ increment VAR1

LEA [VAR1 HERE - 2-](PC),A0

ADD.L #1,(A0)

END-CODE

ASM INTROUTINE

BSR INCVAR \ PC relative call so OK

CLR.L D0 \ tell Amiga we’re done

END-CODE

See the files JD:DEMO_INTERRUPT and JD:HIGH_INTERRUPT for more examples.

68000 Assembly 14 - 9

The Forward Assembler as a MODULE

In JForth V1.3 and higher, the Forward Assembler may be compiled and saved as a MODULE (as is
the default for the release version, in MOD:ASSEM.MOD). JF:LOADJFORTH, the standard
procedure for recompiling the com:JForth image, automatically regenerates the .MOD file anew if
MODULE support is included.

When implemented as such, the ASM keyword will automatically load the ASSEM module from
MOD: if needed.

DISM - JForth Disassembler

Compiling the Disassembler

Since the Disassembler is available as a MODULE, it is not usually required that the program be
compiled. Nonetheless, the Disassembler can be compiled into the resident dictionary by entering:

DETACHMODULE DISASSEM

INCLUDE JF:DISM

Disassembler Output

DISM, and its related forms, sends output to the standard EMIT device. It is of the form:

 1D14 move.l tos,-(dsp) 2D07 "-."

 1D16 moveq.l #$20,tos 7E20 "~ "

 1D18 bsr.w 26D0 = EMIT 6100 09B6 "a..."

 1D1C rts 4E75 "Nu"

The first column indicates the address of the code. This may be displayed in several modes (see
DISM, RISM, ADISM and RELDISM below), but normally represents the JForth relative address.

The second column is the assembly language mnemonic.

The third column displays the operands (for options, see DISM-NAMES, below).

In the fourth row is shown the actual hex code of the opcode and related operands.

By default, the fifth column displays ascii-equivalent characters, helpful in identifying strings. (for
options, see DISM-CYCLES, below).

"Automatic" Disassembly Features

All forms of the 'automatic' disassembly words will keep track of forward branches, and only stop
disassembling when a 'return' type opcode is displayed that does not have a pending conditional branch
past it. (?PAUSE is called at the end of each line, though, so you can simply type QUIT to stop
disassembling, or space bar to pause and RETURN to continue).

All forms of 'automatic' disassembly will examine two state variables to determine runtime conditions
for:

1. whether generic or JForth specific register names will be displayed. (see DISM-NAMES,
below)
2. whether the timing cycles will be displayed in the 5th column instead of the default ascii

information. (see DISM-CYCLES, below)

These state variables are DISM-NAMES and DISM-CYCLES, respectively. For example, to display
the timing cycle information, enter DISM-CYCLES ON then disassemble something, observing the
5th column.

Timing cycles are of the form (xx:yy:zz) where:
xx = no. of 68000 bus cycles this instruction

68000 Assembly 14 - 10

yy = no. of 68000 bus cycles since beginning of word (ignores branches & loops)

zz = no. of microsecs since beginning of word (on std. A2000, 7.16 Mhz 68000)

NOTE: Timing cycles are estimates at best and largely for entertainment value.

CPU registers are displayed according to the state of DISM-NAMES as follows:

DISM-NAMES = 0 DISM-NAMES != 0

 a0 a0

 a1 a1

 a2 a2

 a3 +64K image-base+64K

 a4 org origin

 a5 up user pointer

 a6 dsp data stack pointer

 a7 rp return pointer

 d0 d0

 d1 d1

 d2 d2

 d3 d3

 d4 loc locals

 d5 iloop 83-type loop index 1

 d6 jloop 83-type loop index 2

 d7 tos top of stack

NOTE: the same flag, DISM-NAMES also determines whether the disassembler will attempt to
display the names of routines being 'called'.

Disassembling within the JForth Image

For examining code within the JForth image, the two most often used words are DISM and DEF.

DISM (rel-addr --) \ for example, ' D+ DISM

Disassembles from the relative address on the stack in 'automatic' mode (see above). DISM does not
recognize strings, and attempts to disassemble them.

DEF (<wordname> --) \ for example: DEF D+

DEF attempts to find the next input word as a dictionary entry. If it is successful, it disassembles from
the code-field-address. Note that DEF will recognize a compiled string, displaying its content in ascii
form.

Disassembling outside of the JForth Image

Three words are useful for disassembling code that exists outside of the JForth image.

ADISM (abs-addr --)

ADISM disassembles from the absolute address on the stack, with addresses labeled as such.

RISM (rel-addr --)

RISM disassembles from the rel-address as does DISM, but displays the first line as address 0, with
successive addresses being labeled relative to the beginning of the disassembly.

RELDISM (org-addr rel-addr --)

RELDISM changes the output addressing scheme similar to RISM, but accepts an additional parameter
specifying the address to consider relative 0, the origin address.

68000 Assembly 14 - 11

The Disassembler as a MODULE

In JForth V1.3 and higher, the Disassembler may be compiled and saved as a MODULE (as is the
default for the release version, in MOD:DISASSEM.MOD). JF:LOADJFORTH, the standard
procedure for recompiling the com:JForth image, automatically regenerates the .MOD file anew if
MODULE support is included.

When implemented as such, the following words will automatically load the DISASSEM module from
MOD: if needed:

DEF DISM RELDISM RISM ADISM DISM-DONE? DISM-WORD?

INIT-DISM DISM-CYCLES DISM-NAMES DISM-ORIGIN .REGNAMES?

SHOW-CYCLES

When the Disassembler is being used in module form, these words also form the entire programmatic
interface to the facility.

68000 Assembly 14 - 12

