
Chapter 13
Debugging

by Phil Burk

Debugging is the process of finding out why a program doesn't behave as it should. The bad behavior
can be anything from printing the wrong answer to crashing the machine. Finding the source of bugs
quickly is a skill that one develops through experience. One can easily spend most of one's precious
time debugging. It is worth developing these debugging skills so that one has more time for
developing and enjoying code.

Debugging a program really starts before it is written. For information on how to avoid bugs in the
first place, please see the sections on programming style.

In this chapter, we will discuss various debugging techniques as well as the various JForth tools
specific to debugging.

Tools Overview

These tools can be used together to debug your programs.

DEBUG is JForth's source level debugger. It is described in detail later in this chapter.

DEF will show you the assembly language code that is put together by the JForth compiler. This is not
for the faint of heart. It is especially useful for debugging immediate words that compile code, or if
you suspect that the compiler is generating code incorrectly. This is extremely rare but can happen.
Please call us right away if it does. Please see the section on the Disassembler for more details.

DST will dump an Amiga structure showing you the name of the members and their value. It is in
JU:DUMP_STRUCT. Check it out.

DUMP will display the contents of memory at a given address. It is useful for examining data
structures like the dictionary, and strings. The stack diagram is:

DUMP (address count -- , dump memory)

ECHO (-- addr) is a variable. If you set this to TRUE, the compiler will echo everything as it
compiles. This is handy if you are crashing during compilation.

FILE? is handy when you are examining unfamiliar code and need to know how a word is defined.
Enter FILE? followed by the name of the word to study.

MAP can sometimes reveal problems related to dictionary size, number of relocations, etc.

TRAPS sets the 68000 exception vectors so that errors like zero divide and odd addressing are
trapped. Activating TRAPS will prevent some of the common GURU messages. TRAPS can be
turned off with NOTRAPS . TRAPS are automatically installed when you start JForth.

UNRAVEL when executed, displays the return stack as a sequence of subroutine calls. I will pause
here to mention that RAVEL and UNRAVEL mean the same thing. Look it up in a dictionary if
you don't believe me. Include JU:UNRAVEL for this. UNRAVEL is useful in a large program
when you want to know who is calling a word. Simply put a call to UNRAVEL inside the word
that is being called. A typical UNRAVEL display looks like:

-150,664

16,576,646

in voc: FORTH in word: (QUIT)

in voc: FORTH in word: INTERPRET

Debugging 13 - 1

in voc: FORTH in word: DEFER-EXECUTE

in voc: FORTH in word: (INTERPRET)

in voc: FORTH in word: EXECUTE

Debugging Hints

Every debugging problem is unique and has a different solution. There is no entirely rational way to
find a bug quickly.

Since most debugging is best done intuitively, I have designed this section as a random assortment of
hints and questions that may lead you to an answer. At some point in this process you will probably go
"Ahah!" and be back in action.

The first step in debugging is to come up with a fairly concise description of the bug. An example
might be, "My program is printing one too many numbers." Another might be, "Whenever I click the
left mouse button, after drawing a rectangle, I crash.". Once you have a concise description, you can
proceed.

ISOLATE THE ERROR. Try to figure out exactly which word is not doing the right thing. Execute
each word in the offending area individually to make sure it matches its stack diagram.

WALK THROUGH YOUR CODE. Often a step by step analysis of the offending code is the best
way to spot where things go wrong.

CHALLENGE YOUR ASSUMPTIONS. If the code is crashing, obviously something that you
assumed was OK is not. Reexamine that code that couldn't possibly be the problem. I have known
people to systematically reject all of the code as being the possible source of the error which leads
them to the contradictory statement that the bug cannot exist but it does!

DOES YOUR CODE CRASH AT COMPILE TIME? In other words do you get an error while you
are INCLUDING a file. If this is true then you might have a syntax error like a missing THEN or a
missing ; . You should also check your code for any IMMEDIATE words since they can execute at
compile time and cause problems if they are buggy. To find out where the problem is occurring, turn
ECHO ON , then include the file. The contents of the file will echo as it is being compiled.

IS THE COMPILER NOT FINDING WORDS THAT YOU THINK IT SHOULD? Check for
misspelled words, or a missing (or ; . You might also try REHASH or HASH.OFF in case there is a
problem with HASHING. You should also enter ORDER to see what vocabularies are being searched.
If you can't get it to recognize any words, try entering:

ROOT ONLY FORTH

to reset the vocabulary order. Remember that if you are using ANEW, you may have to FORGET a
file explicitly in order to INCLUDE something underneath it. If you have just added an INCLUDE?
this might be the problem. You compile the new code then ANEW comes along and FORGETs it!
You may also have overwritten part of the dictionary. WORDS will tell you this.

START OVER AGAIN. Sometimes you may be doing things right but are suffering from the
lingering effects of a bug that you fixed an hour ago. The old bug may have randomly poked into
memory or set some variables wrong. This can be wildly unpredictable. Do a BYE then rerun JForth.
You may even want to reboot.

DOES IT WORK THE FIRST TIME THEN NEVER AGAIN? This can be from a number of
causes. When you first compile and run, your variables are zero. What are they the second time you
run? Did you do an ALLOCBLOCK or an FOPEN at compile time as you include? (Yuck!) If so what
happened to that memory or that file? The best way to handle these problems is to have an INIT word
that does all required initialization, opens all files and windows needed, allocates all memory needed,
initialize all data structures, etc. Then have a TERM word that cleans up all this stuff. Make sure you
call the term word before recompiling the code.

DID IT USED TO WORK BEFORE YOU MADE SOME CHANGES? Try to determine exactly

13 - 2 Debugging

what you changed. It is good to test periodically before you go too far along the primrose path. Keep
frequent backups.

USE .S LIBERALLY. A few .S calls in your code can be very illuminating. This is not so
important now that we have the source level debugger.

ARE YOU OFF BY ONE? Remember DO LOOPs go up to but don't reach their limit. Also
remember this old problem. You have a row of boxes labelled 15 through 25 consecutively. How
many boxes do you have? Ten? Wrong!! Eleven boxes. Count them. This is known as the old "off by
one" problem.

COMMON AMIGA PROBLEMS. Check to make sure that you are passing the Amiga absolute
addresses in your function calls and structures. See >ABS and >REL in the glossary. Please
remember as well that Forth and the Amiga operating system use a different format for representing
strings. Amiga strings are usually passed as NUL terminated 'C' strings. These are a bunch of
characters with a 0 at the end. Forth typically have a byte containing a character count at the beginning
followed by the characters.

I TYPED SOMETHING BAD AND NOW MY FONT IS MESSED UP! Try entering ^O. That's
control-O. This will switch you back to the original font.

Enough random chatter, now let's see how to really debug code.

Source Level Debugger Tutorial

The JForth Source Level Debugger, DEBUG , allows you to single step through your code. This
shows you exactly what each word is doing. You can see the result of every DUP , SWAP , ROT ,
whatever, as it happens.

Compiling with DEBUG{

Let's try out the debugger and see how it works. First we need to load the debugger. It is a good idea
to do this before you load the program you are working on. To load the debugger, enter:

INCLUDE? DEBUG{ JU:DEBUGGER

To debug a word with DEBUG, we need to compile it with the debugger on. You use DEBUG{ and }
DEBUG to turn on and off the debugger. When the debugger is on, any word you compile has special
information compiled into it for the debugger to use. This makes the code much larger and slower so
we only want to do this when debugging. After you finish debugging, make sure you recompile
without the debugger on.

Let's define a simple word from the keyboard and then step through it. Enter:

DEBUG{ (turn on debugger)

: SUMN (N -- , print N*[N+1]/2)

 DUP 1+

 * 2/

;

}DEBUG (turn off debugger)

3 SUMN .

After the last line, you should see the answer 6 printed.

Examining Code

We can now single step through this program to see how it arrived at its answer. To debug, we put the
word DEBUG right before the word we want to debug. This should be after any stack parameters.
Enter:

0SP (clear stack if not already clear)

Debugging 13 - 3

3 DEBUG SUMN

You will see a window called "JForth Debugger" pop up. In the window, you should see a display that
tells you you are entering SUMN.

Entering: SUMN >>>>>>>>>>>>>>>>>>>>>

[1] 3

3DD46 : ------(DUP |?_

You will also see a stack diagram with the 3 on the stack. Below that will be a hexadecimal address
and the word DUP. This tells you that DUP is about to execute. The cursor will be at the right of the
screen waiting for a key. Press the space bar.

<SPACE>

You should now see 3 3 on the stack which is what we would expect after DUP finishes. We are now
ready to do the 1+ . Keep hitting the space bar until we finish the word. At the end we saw an RTS
instruction. This meant that we were about to do a 68000 RTS, Return From Subroutine, instruction.
This corresponds to the semicolon at the end of a word.

Now let's add some complexity by calling this word from another. Enter:

DEBUG{

: DOSUMS (--)

 100 5 DO

 I DUP . SUMN . CR

 LOOP

;

}DEBUG

DEBUG DOSUMS

Keep hitting the space bar until you see SUMN ready to execute. Hit the space bar again. You should
now see a 15 on the stack. This is the result of SUMN for N=5. You are now ready to execute the .
instruction. Hit <SPACE> and notice that the number 15 appeared in the original program window.

Now let's go through the loop again but this time let's reexamine what SUMN is doing. Keep hitting
the space bar until SUMN reappears in the command area. If you miss it just go around again. At this
point we have two choices, we can hit space and skim over SUMN like before,or we can dive into
SUMN and see it work. With SUMN ready to execute, hit a D key or hit the return key. The display
should now say that you are in SUMN. The display of commands will indent to show that you are
nested inside another word.

To verify that we are indeed in SUMN, hit the W key. This will display "Where" we are. The display
will indicate that DOSUMS has called SUMN.

If you now continue to hit spaces, you will move through SUMN and eventually return to DOSUMS.
Thus <SPACE> will advance though a word while <RETURN> will dive into a nested word.

Stopping with a Breakpoint

Now hit the space bar until we get back to the SUMN command. Let's suppose we wanted to move
more quickly through the loop. It would be nice if we could just stop before each SUMN, see what N
was then zoom forward to the next one. To do this:

Hit the B key.

You should see a message that a "Breakpoint" was set. This is like putting a stop sign by the call to
SUMN. You can have up to 16 breakpoints. To advance quickly:

Hit the G key.

A 'G' tells DEBUG to "Go" until it hits the Breakpoint or finishes the word. Notice that the answer
was printed to the right of the DEBUG display. Hit G a few more times. You can watch the value of

13 - 4 Debugging

N on the stack increasing. You will also see the answers appearing for each time around the loop.

If we get tired of just doing one at a time, we can skip past the breakpoint several times.

Hit the # key.

Enter 7 , hit <RETURN>

Notice that we saw seven answers appear before it stopped again. If we want to just finish the word,
we can "Clear" the breakpoint then "Go".

Hit the C key.

Hit the G key.

You should now advance through the word at a rapid pace until you finish.

Note: You can also specify a breakpoint by before you run the code using BREAKAT which is
described in the Debugger glossary.

Stopping with Control-D

When code is free running and you decide you want to start debugging, you can interrupt the code with
a Control-D. Enter

DOSUMS (let it print a few)

Hit ^D (that's Control-D)

(Control-D can be hit by HOLDING DOWN the <CTRL> key, then hitting a D, then releasing the
<CTRL> key.)

You should now be back in the debugger. Hit W to find out which word you are in.

You can now continue debugging as before.

Debugging a Large Program

If you want to debug a large program from a file, place the DEBUG{ }DEBUG commands around the
include statement. For example:

DEBUG{

INCLUDE my-file (compile one of your programs)

}DEBUG

DEBUG my-word (now debug it)

If you don't want to have the entire file in DEBUG mode you can place DEBUG{ }DEBUG around
individual words in the file. You can also use them within a word since they are defined as
IMMEDIATE.

Debugging a Cloned Program

The Debugger will work with Cloned programs. To debug a Cloned program, you must use
DEBUG.START and DEBUG.STOP instead of the DEBUG command. Here is an example of a
debugging a cloned program.

INCLUDE? CLONE CL:TOPFILE

DEBUG{ (compile with debug)

: TEST (-- , clone this puppy)

 DEBUG.START (open window and start debugging)

 ." Answer = " 2 2 + . CR (fancy program eh?)

 DEBUG.STOP (close window)

;

}DEBUG

CLONE TEST

SAVE-IMAGE TEST RAM:TEST

Debugging 13 - 5

(now in the CLI window, enter:)

RAM:TEST

You should see a window open and a normal debugging session will follow. Note: Since Clone
removes the Forth headers, you cannot use the 'f' command in the debugger. You may, therefore, want
to assign custom functions to keys 7,8,9 using DEBUG.USER.7 , etc. Don't forget to recompile and
reclone without the debugger when you are finished. The debugger will add at least 15K to an
application and makes it run much slower so don't release a program with the debug stuff in there.

IMMEDIATE Words

You will notice that IMMEDIATE words will also show the following word. This is so that words like
' , ..@ , ." , IS , NEW: , etc. will print the word they are operating on. For ." you will not see the entire
string, just the first word. Other IMMEDIATE words like IF ELSE and THEN will also show the
following words even though this is not so important.

Source Level Debugger Glossary

The words are supported by the Source Level Debugger - DEBUG.

BREAKAT (<word> [<command-in-word>] -- , set breakpoint)

This command can be used to set a breakpoint at a given command in a given word. Consider the
following example.

DEBUG{

: FOO (N -- 1)

DUP 1+ SWAP - ; }DEBUG

\ Break ^ <- right there before SWAP in FOO

BREAKAT FOO SWAP

FOO

If you call BREAKAT without a command specified then it will set a breakpoint at the entry point
of a word. Use NOBREAKS to clear all breakpoints or hit 'C' in the debugger.

DEBUG{ (-- , compile with debug on)

}DEBUG (-- , compile normally)

DEBUG (<word> -- , debug the word whose name follows)

DEBUG.BREAK (-- , enter debugger when encountered)

This word can be sprinkled through your program to force breakpoints.

DEBUG.START (-- , open debugger window and start debugging)

DEBUG.STOP (-- , close window and exit debugger)

DEBUG.USER.7 (-- , deferred action for hitting '7')

You can specify your own function to be executed when a '7' digit key is hit. This allows you to use
your own dump and diagnostic routines from the debugger, even when cloned.

: MYDUMP (-- , dump stuff of interest to user)

 ." my-var = " MY-VAR ? cr

;

' MYDUMP IS DEBUG.USER.7

13 - 6 Debugging

DEBUG.USER.8 (-- , deferred like DEBUG.USER.7)

DEBUG.USER.9 (-- , deferred like DEBUG.USER.7)

NOBREAKS (-- , Clear all breakpoints except USER.BREAK?)

USER.BREAK? (address -- break? , user defined break)

This is a deferred word that will be passed the address of the next Forth word to be executed. The
word can then decide whether to break into the debugger. This is handy for making logical
breakpoints. You could, for instance break if a variable was out of range. Here is an example user
break.

}DEBUG (turn off to avoid recursion)

: MY.BREAK (address -- break?)

 drop

 VAR1 @ 100 >

;

' MY.BREAK IS USER.BREAK?

Debugger One Key Commands

When you are in the debugger,you can hit the ? key for a list of available interactive commands. I
recommend playing with these commands to see what they do.

Command Descriptions

Information

w - where?, who called who

6 - 680x0 register dump

 Dump all 68000 Data and Address registers.

 See assembler for more information.

m - memory dump from address on stack

 This will treat the top of stack as an address

 and dump the following 32 bytes.

s - regular stack dump

 This just calls .S

r - return stack hex dump

h - here 256 dump

 Accurately display what's at HERE and on the PAD.

 The PAD is at HERE 128 +.

Action

f - forth, interpret one line

 This will put you in Forth. You can then

 check variables. Check other words.

 Do whatever. Enter a blank line to finish.

 The programs stack will be unaffected by your

 actions. Remember, Forth itself is your most

 powerful debugging tool. (This feature is not

 available in Cloned programs.)

x - drop one number from stack

n - push a number onto stack

+ - add a number to top of stack

Debugging 13 - 7

 These last three commands can be used to

 alter the stack contents.

Bases

1 - decimal, set BASE to 10

2 - binary, set BASE to 2

3 - hex, set BASE to 16

User Keys

7,8,9 - Execute DEBUG.USER.7,8,9

Control

b - set the breakpoint here

 Set a breakpoint so that you will stop here

 again if you ever come back.

c - clear the breakpoint

- enter # breaks to skip

u - up, continue until return

 Finish the current word, go back into

 DEBUG when you return to the calling word.

j - jump over next instruction, don't execute it.

z - set user.break? to 0= , disabled

l - look but don't touch

 The program will continue while displaying

 debugger information. It will not stop

 for Key Commands until you press a key.

g - go, continue execution without debugging

<SPACE> - single step on same level

<CR> or d - dive down into word

q - quit

 Abort. Handy if continuing will cause a crash.

I hope that this debugger will give you a window into your code. It can also be a good learning tool
for Forth beginners.

13 - 8 Debugging

