Chapter 10
Object-Oriented Development Environment (ODE)

Note: ODE was developed by Phil Burk to support HMSL, the Hierarchical Music Specification
Language. ODE was then released as a part of JForth in an effort to promote object-oriented
programming. This chapter, therefore, appears in both the JForth manual, and the HMSL manual .
When information specific to JForth or HM SL appears, it will be noted as such.

Philosophy

Object-Oriented Programming (OOP) allows you to design programs in away that more closely
matches the real world. In the world, we are surrounded by objects. These objects can be thought of as
belonging to different classes, for example pens and pencils. These can in turn be thought as
belonging to larger, more general classes such as writing implements. In the same way, an object-
oriented program involves software based objects. If you were writing a program for an airline you
would have classes such as airplanes, airports, passengers, etc. Airplanes would have information
associated with them such as flight numbers, fuel capacity, altitude, and so on. If you wanted a
particular plane to climb to anew altitude, you could send it a message telling it to climb. It would
then update its internal record of its atitude. For programs that are not tied so closely to the physical
world, you might define classes of files, tables, arrays, or plots.

Quite often, the class of object that you need is already defined. Then you can just use it without
having to define new ones. If you need something very similar to an existing class but different, you
can define anew classthat inherits the desired qualities of the existing class. The fact that classes can
often be used in more than one program alows you to build up alibrary of classes. Thiscan savetime
when programming.

A class defines what an object is made of and what it can do. Once you have defined a class, you can
create as many instances (objects) of that class as you want. Objects may be thought of asintelligent
data structures. Each object knows how to manipulate its own internal data. All objects of agiven
class will have the sameinternal structure and will use the same methods for manipulating that data.

Existing Classes in ODE

A few classes have been defined as part of the official ODE package. The most commonly used ones

are
OB. BARRAY = bhyte array
OB. ARRAY = long word array
OB. ELMNTS = list of N dinensional points, can al so be thought of
as a 2D array.
OB. LI ST = list of single val ues
OB. OBJLI ST = list of other objects.

Hidden Data

The organization of the data and the actual techniques used to manipulate it are hidden from users of
the object. It effectively isolates the information needed to manipulate an object inside the object
itself. This promotes avery modular structure. The code that uses an object doesn't have to know
anything about how that object was implemented. This makesit very easy to modify how an object
works without having to modify the code that usesit. This can be a great advantage when managing
large software projects.

Generic Messages

When you want an object to perform some action, you send it amessage. Examples of messages might
be PRINT: or CLEAR:. Objects"know" how to respond to messages based on methods defined for
their class.

An advantage of object-oriented programming is that you can send the same message to objects of
different classes. Asan example, you could send a PRINT: message to several different objects. Each
one would know how to print its contents in a meaningful form. Some would print atable of values.
Some would only print asingle value. One advantage of thisisthat you don't have to memorize a
differently named PRINT: function for each type of data structure. In atraditional procedural system
you would be writing words like PRINT.ARRAY and PRINT.THING for different data structures.

Another advantage is that you can write generic code. If you have apicture containing different kinds
of graphics objects, you don't have to know what they are or how to draw them. Just send each onea
DRAW: message and they will each know how to draw themselves.

Tradeoffs

The use of object-oriented programming techniques can simplify software design, speed code
development, reduce many types of common errors, and improve maintainability. When you useit for
awhile, you will see why so many programmers are using these techniques in ODE and other OOP
languages like C++ and Smalltalk.

| know what you're thinking now. There must be acatch. Well, one disadvantage with objectsis that
there is some extra memory and speed overhead. The object-oriented support code does use some
dictionary space. It can also be dightly slower than traditional code. Standard Smalltalk is quite ow
because everything is an object, including every variable, constant, etc. ODE, however, was designed
for real time music applications and was, therefore, optimized for speed. This approach istoo
restrictive for a Forth implementation. ODE only makes objects out of the more complex data
structures. All ODE objects use common code that has been optimized for speed.

OOP techniques can aso seem strange and confusing at first. After using it for awhile, however, you
will feel asmall "click” in your head and it will al become clear. Y ou may even find, likel do, that it
is hard to imagine writing some programs without using OOP.

All things considered, OOP techniques can be areal advantage when devel oping software. | think you
will find it useful and enjoyable.

Origins of OOP

Theinspiration for ODE came from Smalltalk, the original object-oriented programming language
developed at the Xerox Palo Alto Research Center. In an effort to promote standardization, the syntax
of ODE issimilar to the syntax for both Smalltalk and NEON, an object-oriented dialect of Forth for
the Macintosh.

For more information about object-oriented languages and their characteristics, see the August 1986
issue of BYTE magazine. Thereisaso an excellent textbook available called Smalltalk-80: The
Language and Its Implementation by Goldberg and Robson. Another good text is Object Oriented
Programming by Brad J. Cox. These references and many others are in the bibliography at the end of
this manual.

Terminology

Class- A description of the data contained within an object, and the methods are used to manipulate
that data.

Object - Aningtance of aclass. Each object hasits own data space and a pointer to its class.

Method - A function that is associated with a particular class. By convention, method names
generaly end in acolon, for example, PRINT: or ADD:.

Superclass- The class from which anew classisderived. All classes are derived ultimately from a
root class named OBJECT .

Inheritance- Each new class automatically has available all of the properties of its superclass. This
includes all instance variables and all methods. The new class then adds new methods and/or instance
variables.

Instance Variable- A dataitem that is contained within each object of agiven class. To accessan
instance variable from outside an object, you must use only that object's defined methods. Instance
variables can be hidden from other code by not providing any methods for accessing them. Instance
variables can themselves be objects.

Instantiate - To create an object from its class definition.

Turorial 1 - Creating and Using Objects

Including ODE

ODE isaready compiled as part of HM SL. JForth users can load ODE by entering:
I NCLUDE? OBJECT JO LOAD _ODE

Creating an Object, Instantiation

Creating an object is similar to creating other Forth data structures, like VARIABLE. Enter the class
name followed by the name of the object to be defined. Let's create an instance of the integer class
OB.INT named MY-INT. Enter:

OB. | NT MY-1 NT

Please note that this since thisis a defining word, it should be used outside of colon definitions, just
like VARIABLE and CONSTANT .

Y ou have now defined an object that exists in the Forth dictionary. If you enter the name of an object,
it will return itsrelative address. Y ou can use this address if you want to pass the object as an item on
the stack. Enter:

MY- | NT
Sending Messages

To make an object do something, you must send it amessage. For example, to put avalue into this
integer object, send a PUT: message to it. The integer will know what to do. In this case it will know
to take the value at the top of the stack and store it internally.. You can then send a PRINT: message to
verify that thisworked. Hereis an example:

456 PUT: M-I NT

PRI NT: MY-INT (456 will get printed.)
The OB.INT classis not very useful except asan example. It waswritten as asimple exercise and is

often used as a superclass for other classes. When | want an INTEGER | usually use aVARIABLE or
aVALUE.

Using Arrays

A more useful class of objectsisthe array. To create an array of 32-bit words named MY-ARRAY,,
enter:

OB. ARRAY M- ARRAY

The data for the array is stored in dynamically allocated memory that we request from the operating
system. Thisallows small programs to access large amounts of memory whose size can vary as
needed. To allocate memory, send a ?NEW: message to the array. The array object will request that
enough space for that much data be allocated from a pool of free memory. To alocate room for 10

cells, enter:

10 ?NEW M- ARRAY .
Since each array cell isfour bytes, 10*4=40 bytes were just allocated. If the allocation was successful,
the address of the allocated memory isreturned. If the allocation fails because of insufficient free
memory, it will return azero. Y ou should always check to make sure that you got the memory you

requested. No matter how much memory you have installed, you can always run out of free memory.
If you are writing programs for others, remember that they may not have as much memory as you do.

Now let's see what isin our array.
PRI NT: M- ARRAY
When you printed that object, it was probably full of strange numbers. Those are the values that just
happened to be in the memory you allocated. To clear it, enter:
CLEAR: MY- ARRAY
PRI NT: My- ARRAY
Notice that you do not have to use different messages for printing integers and arrays. This means that

there will be fewer commands to memorize. Y ou might try sending a CLEAR: message to your
integer to see what happens.

To accessindividual itemsinside your array, you can use the messages AT: and TO: . For example:
98 4 TO MY-ARRAY (Store a 98 at item nunber 4)
101 3 TGO M- ARRAY
0 AT: MY-ARRAY . (Fetch and print value in cell 0, the 1st cell)
PRI NT: MY- ARRAY

Finding an item in an Array

So far thislooks like a pretty standard array. (See ARRAY in the main glossary for an example of a
standard array.) Becauseit isan object, however, it can be smarter than astandard array. Let's ask the
array to find avalueinside of it. Assuming you enterred the examples above, let's ask it to find the
first occurence of 101. Enter:

101 | NDEXCF: M- ARRAY . S
Notice that it returned a3 and a-1. The 3istheindex of the value 101 and the-1isaTRUE value. If
it can't find the value it just returns FALSE.

0SP 1969 | NDEXOF: MY- ARRAY . S

Range Checking

A common error that can occur when programming is to use an array index that istoo large for the
array. Our array has 10 itemsinit. Theindicesrunfrom0to 9. Let'stry to read past the end of our
array.

10 AT: MY- ARRAY

123 900 TO MY- ARRAY
ODE can check for indices that are out of range and will abort if it detects one. Notice that it printed
several things here. Theindex out of rangeis printed first. Then ODE dumps the object stack. (More
about thislater.) The current object isthe bottom one listed. Then it prints the nature of the error.
Thisis especialy handy when debugging. Once you have an application thoroughly debugged, you
can turn off thisrange checking. One way to do thisisto enter:

FALSE DO. RANGE: MY- ARRAY

10 AT: MY-ARRAY \ you get a nunber but it is garbage

Warning, do not try to seeif TO: will let you over-index. AT: is safe but over-indexing TO: can
overwrite memory and cause you to crash.

Another way to turn off range checking is to enter RUN.FASTER and recompile your program. This

will affect al objects compiled.

If you forget how many items you have, you can use LIMIT:. Enter:
LIMT: My-ARRAY .

Freeing Memory in Array Classes

Many classes use the NEW: method to allocate memory for their use, as we have seen. When oneis
finished using an object, one must DEallocate the memory. Thisis done with the FREE: method.

FREE: M- ARRAY

I recommend writing aword that frees all the objects that need to be freed. Y ou can then use
IF.FORGOTTEN to make sure thisword is called automatically if you forget the code that defines
them. Once you FORGET an object, it istoo late to FREE: it..
CLEANUP
FREE: M- ARRAY

| F. FORGOTTEN | F. FORGOTTEN
}STUFF: and FILL:

Let's now try to stuff some specific numbers into our array. One easy way to do thisisusing } STUFF..
Enter:

STUFF{ 23 987 44 2001 }STUFF: MY- ARRAY

PRI NT: My- ARRAY

Notice that } STUFF: automatically allocates memory if needed. If you want you can call 2NEW:
before } STUFF: to guarantee allocation.

To fill an entire array at once, enter:
345 FILL: MY- ARRAY
PRI NT: M- ARRAY

Now that we are done, enter:
FREE: M- ARRAY

Tutorial 2 - Early versus Late Binding

To Whom It May Concern,

In the previous tutorial, we sent messages to a specific object, MY-ARRAY. Thiswould be like
sending a message to a specific person. We would put that person's name on the message, "Dear
Larry, blah blah blah". Sometimes, however, we don't have any specific person in mind to receive the
message. |If ashopkeeper goesto lunch, he or she would put a"Gone to Lunch" message on their door.
The message would then be received by anyone who happened to stand in front of that door.

Similarly, we can send a message to whatever object happens to have its address on the top of the
stack. When we write the message we may not know what object that is so we cannot use its name in

the message.
Theword [] (aleft square bracket followed by aright square bracket pronounced "bracket bracket")
can be used to send a message to an object on the stack. ODE programmers a so pronounce this as
“late-bind.” The following two lines are essentially equivalent.

PRI NT: MY- ARRAY

MY- ARRAY PRINT: [] (Mr-ARRAY | eaves its address on stack)

Thefirst techniqueis called early binding and the second is called late binding. When aword is
compiled with early binding, the CFA (Code Field Address) of the method to use is determined at

compile time and compiled into the dictionary. For late binding, this process doesn't happen until run
time. Late binding istherefore dightly slower than early binding but is often required for its added
functionality.

This may sound more complicated than it really isin actual use. Late-binding is simply atechnique for
sending a message to an object addressed “to whom it may concern.” The main difference isthat in
late-binding, the object’ s address comes before the method, and the method is followed by the late-
bind brackets.

Imagine that you wanted to define aword that would print then clear the contents of many different
objects. Thiscould easily be done with late binding. (Y ou might want to put this next examplein a
file because we will change it later.)

PRI NT&CLEAR (object-address -- , print then clear an object)

DUP (duplicates the object address)

PRINT: [] (use late-binding)

CLEAR []

MY- 1 NT PRI NT&CLEAR (pass the address of MY-INT)
MY- ARRAY PRI NT&CLEAR

Local Variables and Late Binding

A useful technique with late-binding isto use local variablesto hold the address of the object. (Please
familiarize yourself with local variables before continuing. JForth users will find them in chapter 11.
Macintosh users will find them described in the Macintosh supplement.) Locals can help eliminate
confusing stack manipulations. Asan example, you could slightly modify the above word to store the
address of the object in aloca variable:

PRI NT&CLEAR { obj -- , print then clear an object }
OBJ PRINT: []
OBJ CLEAR []
Since thistechniqueis used so often with local variables, ODE supports an alternative syntax. Local

variables that contain an object address can be used as if they were an object. The messageis still late
bound, but it is easier to read. Hereis another way to write the above word.

PRI NT&CLEAR { obj -- , print then clear an object }
PRI NT: OBJ
CLEAR: 0BJ

This exampleisrather trivial. The power of using these local variables will be more apparent when
used in more complex words.

Now that we are done, don't forget to enter:
FREE: MY- ARRAY

Tutorial 3 - Using OB.ELMNTS

A very useful subclass of OB.ARRAY isOB.ELMNTS. Each element of thisarray can have multiple
values. An examplewould be an array of X,Y paints, or elements. Each element would have 2
dimensions, X and Y. In a3 dimensional array, each element would havean X, aY and aZ vaue.
The space need not be geometric. Another 3 dimensional space could have the dimensions Time,
Pitch, and Loudness. The elements in this space could be musical notes. Let'slook at an example of
an array of X,Y points. Let's make room for 100 points with 2 dimensions. Enter:

OB. ELMNTS XYPS \ x,y points
100 2 ?NEW XYPS . \ if zero then not enough menory!

When we printed the array, we saw that there were no pointsin the array yet. Let's add some. Enter:
10 52 ADD: XYPS
30 17 ADD: XYPS
15 294 ADD:. XYPS
PRI NT: XYPS
ADD: is based on the notion that elements have no value until a value has been given them. In redlity,
of course, every byte in a computer has a value from the moment it isturned on. In this model,
however, even though data memory has been allocated, the object is considered to beinitially empty.

Y ou can add elements one at atime by using ADD: and have it keep track of how many you have
added. You can find out how many elements have been added by using MANY : .For example:

MANY: XYPS . (Prints '3)
We can access the elements in the array using GET: and PUT:. These take an index and operate on the
whole element. Let's change the value of the second point. Remember that €l ements are numbered
starting with zero so the second point is number 1. The first point is number 0.

50 99 1 PUT: XYPS

PRI NT: XYPS

1 GET: XYPS .S

CR SWAP .
If you want to access an individual number, you can use ED.TO: and ED.AT:. The"ED" standsfor
element and dimension to help you remember how to passtheindices. To change the valuein element
2, dimension 1, enter:

75 2 1 ED. TO XYPS

PRI NT: XYPS

2 1 ED. AT: XYPS .
We can ADD: more elements to the end or we can insert elements anywhere in the middle or at the
beginning. Enter:

63 444 1 INSERT: XYPS \ before elenent 1

PRI NT: XYPS

We can remove an element aswell. Enter:

0 REMOVE: XYPS

PRI NT: XYPS
Another way to access the elementsis sequentialy. We can get the first element using: FIRST: then
continue using NEXT:. Enter:

FI RST: XYPS SWAP .

NEXT: XYPS SWAP .

MANYLEFT: XYPS . \ just one left to process

NEXT: XYPS SWAP . . \ that's the |last one
If we go to far with NEXT we will get an error. Enter:
NEXT: XYPS

We went past the end and got an error. If we want to keep going forever we could use NEXTWRAP:.
It will wrap around back to the first element when it reaches the end.

Theread pointer can be set to a specific point or reset back to the beginning.
1 GOTO XYPS \ set to read #1

NEXT: XYPS SWAP .
WHERE: XYPS . \ where are we now?

RESET: XYPS

NEXT: XYPS SWAP .
If you don't want to ADD: points, you can use SET.MANY : to make it seem as if there are many
points. Enter:

50 SET. MANY: XYPS

PRI NT: XYPS

77 0 FILL.DIM XYPS

PRI NT: XYPS
When you want to get rid of those points, use EMPTY: which sets many to zero. (Don't forget that
you can save typing by using <UP-ARROW> to reenter PRINT: XY PS)

EMPTY: XYPS

PRI NT: XYPS

50 SET. MANY: XYPS

PRI NT: XYPS

If you want to actually clear the data use CLEAR: asfollows:
CLEAR XYPS
PRI NT: XYPS
50 SET. MANY: XYPS
PRI NT: XYPS

When you are done using the array, PLEA SE free the memory. Enter:
FREE: XYPS

Predefined Classes

A number of predefined classes already exist in ODE. They can be used directly, or asthe
superclasses for newly defined classes.

OBJECT

The class OBJECT istheroot classfor all other classes. You will probably never use it directly,
however, because all of the methods described here will work for all other classes. Thisis because all
classes inherit this class methods.

ADDRESS: (-- ivars-address , address of instance variables)
.CLASS: (-- , print the class of an object)
DUWMP: (-- , dunp object's instance variables in hex)

GET. NAME: (-- $nane , get printable nane.)
This name can be used for printing graphically with GR.TEXT or for writing to afile.

NAME: (-- , print the name of the object)

Thisisusualy used with late binding where the nameis not known. NAME: SELF is often handy in
Error messages.

PUT. NAME: ($nane -- , change the nane of an object.)

The default name is the dictionary name. This nameis only used for error reporting and printing. If
you change the name, you must still send messages using the name in the dictionary. Thisisvery
important to remember, especially when using dynamically instantiated objects (see the discussion
later in this chapter).

SPACE: (-- nbytes , return size of instance variable space)

This does not include specially allocated memory for arrays, etc. It doesinclude the space required
for the memory pointers, limits, etc. This method is not used very often.

OB.INT - subclass of OBJECT

This provides asimple integer object. Its superclassis OBJECT

CLEAR (-- , clears instance vari abl es)
GET: (-- value, returns value of integer)
PRINT: (-- , print value)

PUT: (value -- , sets value of integer)
+: (n--, add n to value of integer)

OB.BARRAY - subclass of OBJECT

Thisisthe basic array class. Its methods will also work for the other array classes. The datafor the
array is stored in memory allocated for it by the NEW: method. See"Using Arrays' above. The
"elements" of the array are referred to as items to avoid confusion with the term element which has
special meaning for OB.ELMNTS. The numbering of the items starts at zero. Thus an array with ten
(20) items will have items numbered from zero (0) to nine (9).

+TO (value index -- , add value to the indexed item)

?NEW (#items -- addr | O, allocate nmenory for the array)

Thiswill automatically free any memory which has already been allocated, then allocate a new
memory area. If memory cannot be allocated, a zero will be returned. If you run out of memory,
quit from other programs or buy some more. See FREE..

AT: (index -- value)
Return the value of an indexed item.

CLEAR (-- , sets every itemto 0)
This executesa FILL: with zero.

DATA. ADDR (-- data-address)

Get address of allocated memory. This might be used on the Amiga version of HMSL, when using,
for example, OB.BARRAY as an audio waveform.

DO RANGE: (flag -- , enable or disable range checking)
EXTEND: (#itens --)

Extend the memory allocated. This allocates a new area of memory and copies the old data to that
new area. Theold areaisthen deallocated. Thisisuseful if you run out of itemsin an array. Itis
slow, however, so don't use it too often.

FILL: (value --)

Set every item in the entire array to value.

FREE: (-- , free the nmenory allocated by the NEW nethod)

If you are finished using an array, use this method to deallocate its memory. If you do not deallocate
memory for arraysin this way, the computer's memory will slowly get used up. It's good
programming practice to FREE: all your objects when you' re finished with them (like for example,

when apieceis over).
| NDEXOF: (value -- index true | false , search array for value)

LIMT: (-- #itens , return the nunber of itens allocated)
Thisis used for setting DO E LOOP indices, checking for out-of-range conditions, etc.

NEW (#items -- , allocate nenory for the array)
This calls PNEW: and aborts if it returns zero.

RANGE: (index -- , range check index)

Thiswill abort with an error message if the index exceeds the limit of the memory allocated. Thisis
performed automatically but can be disabled using DO.RANGE: .

SET. WDTH, (#bytes -- , Set width in bytes for array item)

This allows you to have 1-, 2-, or 4-byte wide itemsin the array. The value must be set before any
calsto NEW: , so that the right amount of memory can be allocated.

}STUFF: (vO vl v2 ... VN -- , puts values in array)
Use with STUFH{ to load an array. If needed, NEW: will be called to make room for the values.
STUFF{ 12 34 987 6 }STUFF:. M- ARRAY

TG (value index -- , set the indexed itemto the value)

USE.DICT: (flag --)

If flag is TRUE, then PNEW: will allot space in the dictionary when called instead of allocating
dynamic memory. Thisallowsyou to initialize an array with data at compile time and saveit using
SAVE-FORTH. Only store numeric values in such an array, not addresses since they will not be
valid at alater time.

WDTH. (-- #bytes , width of a single array item)
Example of Using Arrays

Put this part in afile.
0OB. BARRAY BAR1
RAMPUP (-- , fill with increasing even val ues)
32 NEW BARLl (allocate nmenory)
LIMT: BARL O
DO
I 2* (even nunber)
I TO BARL (store 2*I at Ith item)
LOOP
INCLUDE thefile then test it using by entering:
BAR1 RAMPUP (put increasing values in array)
PRI NT: BAR1
5 AT: BARL . (will print 10)
99 AT: BARL (will report an "Index Qut of Range" error)
FREE: BARL

OB.ARRAY

This classis the same asthe OB.BARRAY class except that each item is as wide as a standard stack

item, which in JForth and HForth is 4 bytes. Historically, this sensitivity to stack-width isimportant
because HMSL has run on awide variety of platforms and different versions of Forth (including 16-
bit versions). The EXEC: method has been added to this class but the indexing is the same.

EXEC. (index -- , executes CFA stored at indexed item)

This assumes that you have stored some CFAs in the array to begin with. Y ou may find it useful to
fill such arrayswith the CFA of an error handling routine. Then put in the specific CFAS you need.
The following example shows how to get a properly handled error if you don't execute one of your
specific routines:

Example of Execution Array

Put this part in afile.
BAD. INDEX (-- , report error)
" Invalid execution index." CR ABORT
o H . " Hello" CR;
OB. ARRAY EVENTS
I NI T. EVENTS
16 NEW EVENTS (all ocate space for 16 CFAs)
' C BAD. | NDEX FI LL: EVENTS (nmake safe)
"CH 3 TO EVENTS
INCLUDE thefile then test it by entering:
I NI T. EVENTS
3 EXEC. EVENTS (executes DOTH S)
5 EXEC. EVENTS (reports error)
FREE: EVENTS (frees menory now that we're done)

OB.ELMNTS

This class combines a two-dimensional array with the additional features of an ordered set of data. It
has OB.ARRAY as asuperclass. All of the methods that OB.ARRAY has, therefore, also apply to
OB.ELMNTS. Therows of thisarray are called elements. The columns are called dimensions. This
data structure can, therefore, be thought of as an ordered set of n-tuples. An example of thiswould be
using OB.ELMNTS to represent X,Y,Z values. Each element would have 3 values, one for each
physical dimension, X,Y and Z. Another example would be using an OB.ELMNTSto represent a
melody. Then each point might have a Time and a Pitch value. The notesin this melody could be
thought of as pointsin a2 dimensional time/pitch space.

?NEW (#el ements #dinmensions -- addr | 0)
Allocates memory for the data. The default width of each valueis 4 bytes. If memory cannot be
allocated a zero is returned.

ADD: (V1 V2 V3 E VN -- , adds an element to the end)

This adds one row, or element, to the end. The first ADD: goesinto element number 0. The next
ADD: goesinto element number 1 and so on. Seethe tutorial for an example. It is veryimportant to
have the right number of values on the stack when using ADD: . If you do not have the same
number of values as the object is dimensioned, then you will have stuff Ieft over on the stack or get
stack underflows.

BACKWARD: (--)
Advances the cursor used by NEXT: backward one position.

CHOP: (index count --)
Renove count el enents starting at index.
CURRENT: (-- V1 V2 V3 E VN, element at current position)

DI MENSI ON: (-- #di nmensions)
Return number of dimensions declared.

DO (function_cfa -- , pass each elenent to the function)

Thisis useful when you want to do something to each of the elements. The function must “eat” as
many values as there are dimensions. For example, let's calculate the sum of the products of a2
dimensional elements array.
10 2 NEW ELML
2 3 ADD: ELML
4 5 ADD: ELML
VARI ABLE SUM PRODS
*+EACH (a b -- , add product of a and b to SUM PRODS)
* (multiply the two val ues)
SUM PRODS +! (add result to variable)

0 SUM PROCDS !

0 GET: ELML *+EACH (-- , test function outside DO)
SUMPRODS @. (should be 6)
0 SUM PRODS !

'C *+EACH DO ELML (pass each elenent to function)
SUM PRODS @. (should be 26)
FREE: ELML

DUVP. SOURCE: (--)

Prints ODE source code that could be used to regenerate the state of this object. Combining this
with LOGTO allows you to save the contents of an OB.ELMNTS array as source code. This code
can be reloaded using INCLUDE. Alternatively, you could use FWRITE and DATA.ADDR: to
write abinary file containing the contents of an object. Be sure to put a header on the file that says
how much to NEW: the object and how many dataitems and dimensions to use.

ED. AT: (elenent dinension -- value , return value at e, d)

Fetches value based on its row and column address.

ED. TO. (value elenent dinmension -- , store value at e, d)

These two methods (ED.TO: and ED.AT:) are critical because all of the other access methods are
written using them. |f you need to define some special access methods for a new class based on
OB.ELMNTS then you will probably need to use the methods ED.AT: and ED.TO: .

ED21: (elerment dimension -- index , convert to linear index)
OB.ELMNTS are actually implemented using one dimensiona arrays. This method returns the one
dimensional array index for an element dimension pair.

EMPTY: (-- , set nunber of elements to zero)

Thisisfaster then CLEAR: because CLEAR: actually sets the allocated memory to zero. Thisonly
sets the element counter to zero.

FILL.DOM (value dim# -- | fill one dinension with a value)
FIRST: (-- V1 V2 V3 E VN, return first element, set pointer)
FOREWARD: (--)

Advances the cursor used by NEXT: foreward one position.

GET: (element -- V1 V2 V3 E VN, fetch a given elenent)

Using the example for the ADD: method:
1 GET: ELML .S (will produce)

777 888 999
GOorTo (element# --)
Sets the cursor used by NEXT: .
| 2ED: (index -- elenent dinmension , opposite of ED2l:)
| 2ADDR: (index -- address , determine address of an item)

Calculates actual address of aniteminthearray. Usewith ED2I: .

INSERT: (V1 V2 V3 E VN elenment -- , inserts new el enent before)
The pointers are adjusted asin REMOVE: to maintain current position.

LAST: (-- V1 V2 V3 E VN, return |ast el enment added)

MANY: (-- N, return nunber of elenents added)
Sending aMANY : message to ELM1 (from the example for the ADD: method) returns avaue of 2.

MANYLEFT: (-- N, nunber of elenents left after current)
Thisishandy for checking whether an array has been exhausted using NEXT: .

MAX. ELEMENTS: (-- max , maxi mum nunber of elenments all ocated)
Thiswill be the same as the first value passed to NEW: .

NEW (#el ements #di nensions --)
Calls ?ZNEW: and abortsif zero isreturned. ?NEW: is preferred for use in applications.

NEXT: (-- V1 V2 V3 E VN, elenment at next position)
This aso increments the internal pointer. Thisis useful for sequentia processing. An error will
occur if you attempt to go past the end of the array. Use MANY LEFT: to see how may are l€ft.
NEXTWRAP: (-- V1 V2 V3 E VN, elenent at next position)

Thisaso increments the internal pointer. Thisis useful for sequential processing. When the end of
the array is reached, NEXTWRAP: will automatically wrap around back to the first element. Use
WHERE: to find out where you are if need be.

PRINT: (-- , prints out elenents in a table)
PRINT.DIM (dinm# -- , print the values of a single dinmension)
PUT: (V1 V2 V3 E W element -- , stores a conplete el enent)

This stores arow without incrementing any internal pointers. It is usually used for editing.

REMOVE: (elenent -- , renoves a given el enent)
When pointing to an element above the one that was removed, the internal pointers will be

decremented so they still point to the same data. This moves all the higher elements down to fill in
the gap.

RESET: (-- , Resets the current elenent pointer to 0)
This often precedes successive callsto NEXT: .

SET. MANY: (N --)

Set the number of elements currently in object. If you want to make this object act as if you have
ADDed abunch of values, you can set the number of elementsit thinksit has. Y ou can use
SET.MANY: and then use GET: and PUT: to access any element within the range you set. For
example, instead of adding elements:

OB. ELMNTS ELM 1

20 3 NEW ELM 1

15 SET. MANY: ELM 1

PRI NT: ELM 1 (notice 15 elenents)
FREE: ELM 1

Note that the value for SET.MANY : cannot be greater than that for which the object was NEWed.

SIZE: (-- N, return nunber of individual values added)
Thisisthe product of MANY : and DIMENSION: .

SMEAR: (start count -- , snear elenment up)
Overwrites count elements with element at start.

SPLI T: (start count -- , nove elenments up and create a split)
Thisisused internally by INSERT: but can be used externally. Copies elements above and
including start up by count. Thisis more difficult to explain than it isto see: try it.

STRETCH: (index count -- , dup elenent at index , count tines)
Thiswill "internally" duplicate a specific element in an object, count-number of times.

WHERE: (-- elenent#)
Returns the cursor used by NEXT: .

OB.LIST

Thisisaone dimensional version of OB.ELMNTS. It ishandy for keeping alist of things. It has one
new method and one altered method.

NEW (#elenments -- , allocate menory for one di nension)
The number of dimensions is automatically one.

DELETE: (value -- , renoves value fromlist)

Looksfor the valuein thelist and removesit if found. For example:
OB. LI ST MY-LIST
10 NEW MY-LI ST (make room)
1111 ADD: MY-LI ST
234 ADD: My-LI ST
1988 ADD: MY-LI ST
PRINT: MY-LIST (see all values)

234 DELETE: My-LIST
PRI NT: MY-LIST (234 now gone)
FREE: My-LI ST

OB.OBJLIST

This classis used for storing the addresses of other objects. Its superclassis OB.LIST so all of those
methods are inherited. OBJLIST's are extremely important in ODE, where you typically have lists of
various objects that you want to be able to index into, rearrange, perform operations on, and so on.

?I NSTANTI ATE: (cl ass_cfa #objects -- class_pfa | 0)

Dynamically instantiate the objects and store their addresses in the objlist. Thiswill call 2ZNEW:
first to make room for the object addresses. Returns zero if it could not allocate all of them. For
more information on dynamic instantiation, see the advanced topic later in this chapter.

DEI NSTANTI ATE: (--)
Deinstantiates all objects created using ANSTANTIATE. Then FREE: the objlist.

FREEALL: (--)

Send a FREE: message to all objects listed within. This can be very useful in FREE:ing all objects
in alist, when you might not necessarily know exactly what those objects are! Note that FREEALL :
does not actually FREE: the object list itself (just use FREE: for that).

Dynamic Instantiation using OB.OBJLIST

Here is an example that uses OB.OBJLIST to dynamically instantiate 25 arrays from memory. Put this
code in afile so you can experiment with it.

OB. OBJLI ST MJUCHO ARRAYS \ declare array to hold arrays!

MAKE. MUCHO- ARRAYS (-- error?)
\ make roomfor 25 arrays in the object I|ist
' C OB. ARRAY 25 ?I NSTANTI ATE: MJCHO ARRAYS
IF \ yes we nade them
250
DO
I GET: MJCHO ARRAYS \ get Nth array
10 OVER (-- array 10 array)

NEW []
(-- array , nmake roomfor 10 in each array)
I SWAP (-- | array)
FILL: [] (-- , fill dynamic array with |)
LooP
FALSE \ no error
ELSE
TRUE \ couldn't instantiate!!
THEN

CLEANUP. MUCHO- ARRAYS (--)

\ free nenory in all arrays in object Ilist
FREEALL: MJCHO ARRAYS
DEI NSTANTI ATE: MJCHO- ARRAYS

\ Autonatically cleanup if file is forgotten.
I F. FORGOTTEN CLEANUP. MJCHO- ARRAYS

Now include the file, and enter:
MAKE. MUCHO- ARRAYS .

Y ou will now have an object list, 25 long, which contains the addresses of the twenty-five arrays. If
the ingtantiation failed, MAKE.MUCHO-ARRAY Swould return a TRUE as an error flag.

Since these arrays have no names, only addressesin MUCHO-ARRAY S, you can only reference them
by indexing into the list. Thiswill generally involve the technique of late binding, since you will have
to pass the address of the object to the method on the stack.

For example, if you wanted to PRINT: one of the dynamically instantiated arrays, here's how you
would do it:

5 AT: MJCHO ARRAYS (-- address-of-array#5)

PRI NT: []

When you are done using these arrays, you must free them and then deinstantiate them. Enter:
CLEANUP. MUCHO- ARRAYS

Defining New Classes and Methods

New classes can be defined if the existing ones do not provide the functionality that you need. You
should first choose the closest available class to use as the superclass. Then decide what internal
instance variables each object will need. Any methods that have not already been declared will need
to be so that they will have a method index. Do this ssmple by saying:

METHOD new_net hod:
before your class definition (where new_method: is the name of your new method). If you are just
giving new functionality to an old method you will not need to declare anew name. For example, if

you modify the PRINT: method, you won't have to declare PRINT: as a method since it already been
declared for other classes.

It is generally good programming practice to use the same method name for functions that are more or
lessthe same. For example PRINT: for OB.INT does different things than PRINT: for OB.ARRAY,
but the user only has to remember a single method name.

If you instantiate an object inside a class definition, then it will become an instance object that will
exist inside every instance of the new class. See the later example of Instance Objects.

Class Definition Glossary

The following words can be used in the definition of new classes. It iseasiest to learn them from the

examples.
:CLASS (<word> -- , declare a brand new cl ass)
:M(<word> -- , start the definition of a nmethod, like :)
;CLASS (-- , terminates a class' definition)
M (-- , termnates a nmethods definition)
<SUPER (<word> -- , declare the superclass of a class)

The new class will inherit all of the instance variables and methods of the superclass. Thisword is
required for every class definition. If thereisn't any special existing class that you would like to
inherit from then just use OBJECT .

I V.LONG (<nane> --)
Creates a named 32 bit instance variable.

| V. SHORT (<name> --)
Creates anamed 16 bit instance variable.

I V. BYTE (<nanme> --)
Creates a naned 8 bit instance vari abl e.

| V. BYTES (count <name> --)

Make room for "count" bytesin object. The other words, (IV.LONG, IV.SHORT, IV.BYTE, etc.)
were created using BY TES. All instance variables must be declared before any method definitions.

METHOD (<word> -- , declare word to be a new nethod)

It is recommended that the method declared end in a colon to be consistent with the syntax of other
object oriented languages. Methods only need to be declared once and can then be redefined for
severd different classes.

It is necessary to declare a method before the class is defined because the number of methods
declared determines how large to make the classes method table. Each class has atable of CFAS,
one for each declared method. Each method is assigned an index in that table. Thistechnique
allows for extremely fast binding between messages and method code at the expense of some
memory. ODE requires more memory for class definitions than other similar systems, but executes
late binding much faster. Thisisabig advantagein real time applications like games or music. Plus
memory keeps getting cheaper so why not useiit.

Instance Variables

The following words are used inside method definitions to access the instance variables of an object.
When these words are executed they calcul ate the address of the instance variable data, then fetch that
data. The fetch will automatically be of the proper width, for example, an IV.SHORT will use W@.
In thisway, different objects can have their own private copies of the data. To store datainto these
instance variables you must use one of the prefix operators described below. [Technical note: The
address of the current object is kept on a special stack called the object stack. When a method starts to
execute, it can be assumed that that object's address is at the top of the object stack. The instance
variables are defined in terms of their offsets from the address of that object].

| V=> (value <instance_var> --, Store value in ivar)

Thisword will look up the width of the instance variable and use the appropriate store function, C!,
W! or!. Tofetch the value of an instance variable just give its name. Asan example, if you want
to set an instance named 1V-DEPTH to 200:

200 IVv=> |V-DEPTH (only valid inside a nethod)
." Default depth =" IV-DEPTH . CR
| V+> (val ue <instance var> -- , Add value to ivar)
Note: This only works on long variables, ie. those declared with IV.LONG.

I V& (<instance_var> -- addr , Address of ivar)

Thisisuseful if you need an indexed instance variable or if you need to pass an instance variable's
address. Generally, if you are doing alot of indexing of instance variables, it is probably better to
use instance objects.

Using SELF in Method Definitions
Sometimes, to define a new method, you will need to use other methods already defined for that class.

This creates a problem: what object do you pass the message to inside the method definition? The
usual technique of METHOD: OBJECT can't work because the objects themselves haven't been
defined yet, so there is no address of any object to use for the method. Smalltalk and ODE solve this
problem with two special words, SELF and SUPER . SELF allows you to refer to whatever object is
currently being defined inside a method definition for that object. For example, when you see,
CLEAR: SELF inside of amethod definition you know that the object currently being called will be
cleared. SELF and SUPER can only be used inside a method definition.

Warning: methods referenced using method_name: self must already be defined. Otherwise any
previous definition of that method for that classwill be used. Thisis consistent with the Forth
convention of not allowing forward referencing.

For example, let’s define amethod called DIM.SUM: for a class which isa subclass of OB.ELMNTS.
DIM.SUM: will sum the values for a given dimension. (Note that we use local variablesin the
method. The'{' denoteslocal variablesinstead of a normal stack diagram. See the JForth or HForth
manual for more information on local variables.) Enter thisin afile using atext editor.

\ Declare nmethod to be defined.

METHOD DI M SUM

\ Declare new class as a subclass of OB. ELMNTS
: CLASS OB. NEW ELMNTS <SUPER OB. ELMNTS

:MDIMSUM { dim| cursum-- sumof-all-values }
0 -> CURSUM
MANY: SELF 0O
DO
| DM ED. AT: SELF
+-> CURSUM
LOOP
CURSUM
i M
; CLASS
\ Now let's instantiate one and test it.
OB. NEW ELMNTS NELM 1
TEST. NELM
10 2 NEW NELM 1
5 20 ADD: NELM 1
5 7 ADD: NELM 1
" Sumof dinension 1 =" 1 DOIMSUM NELM1 . CR
FREE: NELM 1
Totest it, INCLUDE thefile and enter:
TEST. NELM

Using SUPER and SUPER-DOOPER in Method Definitions

SELF is used more often than SUPER. SUPER is only needed when the new class redefines a method
but you till want to access the old one. For example, if you want a method that prints an object as
previously defined but & so prints out some dashes, and an item-count:
"MPRINT: (-- , extended print)
PRI NT: SUPER
CR." ---mmmmmmmm - " CR

MANY: SELF . ." items" CR
M
In this example, using PRINT: SELF would have resulted in afatal recursion — you can't use a
method that is currently in the midst of being defined!.

Occasionally you won't like the way your superclass performs a method, but you like the way that
superclass's superclass does. In this situation you can use SUPER-DOOPER instead of SUPER.

: CLASS (OB. STRANGE <SUPER OB. ELMNTS

: M PRI NT: (--)

." Double Print!!!" CR
PRI NT: SUPER- DOOPER (print |like an ob.array)
B T R " CR
PRI NT: SUPER (print like an ob.elmts)
i M
; CLASS

SUPER-DOOPER is not really standard object oriented programming, it's something we added to
ODE when we needed it in the implementation of HMSL, and it has proved useful ever since.

Special Methods: INIT:

The method INIT: isautomatically executed when an object is instantiated. 1f you want to set default
values for the instance variables, or perform any special initialization, just define an INIT: method.

Y ou will probably want to include an INIT: SUPER to invoke any initialization that the superclass was
doing. Generdly it's best to avoid doing thingsinside INIT: that affect the state of the operating
system. Thisincludes allocating memory (NEW:), opening files, etc. Otherwise you will not be able
to save the INITed object in a precompiled form, for its pointers to memory and fileswill beinvalid
the next timeitisrun.

Example Class Definition

To clarify this, let's define a class of object that isacity. We want to keep track of population and
area. Let'susethe OB.INT class asthe superclass since it already does some of what we want the new
classto do. We can use the existing instance variable in OB.INT for the population. We will need to
add a new instance variable for the area

METHOD PUT. AREA: (decl are new net hods)

METHOD CET. AREA:

METHOD CALC. DENSI TY:

:CLASS OB.CITY <SUPER OB.INT (inherit properties of OB.INT)
I V. SHORT | V- AREA (declare 2 bytes for the area)

CMINT: (-- , Set defaults)
INIT: SUPER (performinitialization of superclass, inportant)
1 I1V=>IV-AREA (avoid O divide in CALC. DENSITY:)

i M
M PUT. AREA: (area -- , set area of city)

I V=> | V- AREA (store using prefix operator)
M

M GET. AREA: (-- area , return city's area)
| V- AREA (| eaves value automatically)

M

:M CALC.DENSITY: (-- density, return people per acre)
GET: SELF GET. AREA: SELF /

i M
:MPRINT: (-- , redefine print to performnew function)
." The city of " NAME: SELF CR
." has a population of " CGET: SELF . CR
." and an area of " GET.AREA: SELF . CR
." The density is " CALC DENSITY: SELF . CR
M

; CLASS (finish class definition)

OB.CITY ARMPIT (declare two instances)
OB.CI TY BI GHOLE

10034 PUT: ARMPIT (set popul ations)
795 PUT: BI GHOLE

45 PUT. AREA: ARMPIT (set areas)
29 PUT. AREA. BI GHOLE

PRINT: ARMPIT (print city reports as defined)
PRI NT: BI GHOLE

Example of Creating a Class with Instance Objects

Lets create a subclass of OB.ELMNTS that keeps information about each of it'sdimensions. It will
have an internal array with oneitem per dimension. It will be sent a NEW: and FREE: message as part
of the class NEW: and FREE: method.
(declare nethods for accessing |Instance Object)
METHOD PUT. DI M DATA:
METHOD CET. DI M DATA:
: CLASS FOO <SUPER OB. ELMNTS
| V.LONG | V- FOO FLAVCR (normal instance variable)
OB. ARRAY | V- FOO- ARRAY (Declare Instance bject)

M NEW (#elmmts #dinensions --)
TUCK NEW SUPER (calls FREE:)
NEW |V-FOO ARRAY (so NEW this after SUPER)
(I'f you reverse the order above, |V-FOO ARRAY will get FREE:d)
(after NEW SUPER because NEW SUPER calls SELF FREE: [])
M

:MFREE: (-- , called by NEW)
FREE: SUPER
FREE: | V- FOO- ARRAY

M

:M PUT. DI M DATA: (data dim--)
\ set associated data for dinension
TO | V- FOO ARRAY
M
:M GET.DIM DATA: (dim-- data , get associ ated di m data)
AT. | V- FOO ARRAY

M
:MPRINT: (-- print values and dimdata)
PRI NT: SUPER
" Di nension values ---" CR
PRI NT: | V- FOO- ARRAY
M
; CLASS

\ Instantiate and use a FQO

FOO MY- FOO

20 3 NEW MY- FOO

11 22 33 ADD. M- FOO

234 345 456 ADD. M- FOO

77 1 PUT. D M DATA: M- FCO (set dinmension value)
PRI NT: MY- FOO

FREE: MY-FQO

Remember, instance objects, like instance variables, can only be referenced from inside a method or a
Forth word called from a method for that object!

Advanced Topics

ODE Functions

CURRENT. OBJECT ~ (-- object)

Object currently being processed. Thisword is handy if a method calls afunction and the function
needs to know which object called it The function can then send late bound messages to the object.
A lot of HMSL objects, like jobs and interpreters automatically pass their own addresses to many of
their methods, so CURRENT.OBJECT is only necessary in unusual cases.

RUN. FASTER (--)

Turn off some error checking for speed. Turns off late bound class checking which ensures that you
are sending messages to areal object and not some random piece of memory. Also turns off range
checking for subsequently compiled array based classes. Only call this when you have finished
debugging your program. Recompile your aplication after calling this.

RUN. SAFER (--)
Turnson error checking turned off by RUN.FASTER Default mode for ODE.

Getting Information About Classes

There are several words that you can use to find out information about a particular class. These are

useful if you want to get the most use from a given class.
METHODS. OF (<class> --)
Show the methods supported by aclass. For example, to see what methods are supported by the
OB.ELMNTS class, enter:
METHODS. OF OB. ELMNTS

| NHERI TANCE. OF (<class> --)

Show the superclasses of aclass To see what classes OB.ELMNTS inherited its methods and
instance variables from, enter:

I NHERI TANCE. OF OB. ELWMNTS

ALL. METHCDS (--)
Show all methods declared in dictionary.

Dynamically Allocated Objects

Sometimes you may want to create, or instantiate, an object while a program is executing. Otherwise
all objects would have to be defined at compiletime. There are two words used in dynamic
instantiation:

?I NSTANTI ATE (<cl ass> -- object-address | 0)

This creates an object of the requested class in free memory. The object is added to alist of dynamic
objects where it can be found using 'O . It will be given the name DY Nn, where nnn goes from 000
to however many you have. You can't reference these by name since there will be no NFA (name
field address) to use for the name. Y ou can change the name using PUT.NAME: but thisis only
used for printing purposes, and cannot be used for messaging. All messages to this object must be
sent using late binding, and for this you would typicaly retrieve the address of the object from some
user created object list or array (see the example with OB.OBJLIST).

DEI NSTANI ATE (obj ect-address --)
Deallocate dynamically instantiated object.

Here is an example of adynamically allocated array object. It usesalocal variable to store the object
address. Binding to alocal variableis always late binding. Notice that in this example we check to
make that INSTANTIATE and 2ZNEW: returned address indicating success before proceding.
DYNARRAY { newobj -- , Deno dynamic array. }
2?1 NSTANTI ATE OB. ARRAY \ Create dynam c object
DUP -> NEWOBJ \ save in |ocal
I F
\ All ocate data space, note use of I|ate-binding
12 ?NEW NEWOBJ
I F
789 FILL: NEWOBJ
PRI NT: NEWOBJ
FREE: NEWOBJ \ Free allocated nenory
THEN
NEWOBJ DEI NSTANTI ATE \ Deal | ocat e obj ect.
THEN

Now test this by entering:

DYNARRAY

'O (<dynam c-object> -- object-address)
Search the list of dynamically instantiated objects for the object with the matching name.

If you need to use an array inside of another object, you could instantiate one and store its addressin
an instance variable. However, you can also declare instance objects (described previously in this
chapter).

Examining Instance Variables

When debugging object-oriented code, it is useful to be able to examine instance variables even if
there is no method for accessing them. To do this you can use the DUMP: method. ODE supplies an
aternative that is “technically” illegal in an object-oriented system and allows the user to reference an
instance variable using techniques normally used only for C structures. In the previous example, if you
did not have a method for GET.AREA: , you could enter:

ARVPIT REL->USE .. @1 V-AREA . (Get the area of Arnpit)
Don't try this at home, kids.

Error Reporting

Thereisaspecial facility for reporting errors inside objects. It dumps the object stack which givesa
traceback of which objects were calling which.

OB. REPORT. ERRCR ($net hod- nane $nessage severity --)

The severity is either ER_WARNING , ER_RETURN , or ER_FATAL . For fatal errors, the object
stack is printed, cleared, and execution aborted. Here is an example of detecting an out of range
error in amethod called DOIT:

" DAOT:" " Input out of range"

ER_FATAL OB. REPORT. ERROR

Inheritance

A class definition contains several things used when one class inherits instance variables and methods
from another class. The number of bytes of instance variable space is kept. When the subclass has
instance variables defined, their offset begins after the superclass's area.

A table of CFAsfor the methods of a given classis kept at the end of a class definition. Each declared
method has a method index that is the same for all classes. When anew classis defined, atable large
enough to hold all of the declared methodsis alloted in the dictionary. The word <SUPER copiesthe
CFAs from the superclass into the CFA table of the subclass. A message sent to an object will use
these CFAs unless a new method has been defined that overwrites that entry in the table. When
SUPER is used, the CFA from the superclassstable is compiled, regardiess of the value in the current
class CFA table.

Memory Placement for Amiga

If you create an array object that will be used by the Amiga coprocessors, then the data must be
allocated in chip memory. This can be controlled by setting a variable called MM-TY PE to
MEMF_CHIP before calling NEW: .

OB. BARRAY | MAGE- DATA

MM TYPE @ (Save old val ue)

MEMF_CHI P MM TYPE !

32 NEW | MAGE- DATA (All ocate space in CH P RAM)

MVt TYPE !

Thisis done automatically for HMSL classesthat need it, i.e. OB.WAVEFORM, OB.SAMPLE and
OB.ENVELOPE.

Cloning ODE Programs using JForth

If you are going to Clone a JForth program that uses ODE, you MUST do the following:

1) Compile REDEFs that are needed by Clone. These are loaded by default if you use the file
LOAD_ODE. If not you MUST:

| NCLUDE JO. CLONE_SUPPORT
2) Do al memory allocation at Run Time. This means you cannot call NEW: at compiletime. You

must call it from aword in your program if you need it. If you can save a program using SAVE-
FORTH then you are OK as far as this requirement is concerned.

3) Initialize the Object Stack. The pointer uses absolute addresses for speed and must be converted
before running ODE. At the beginning of your program, therefore, you must call OS.SP! or you
will definitely crash.

4) We recommend that you compile Clone before compiling ODE but it is not required.

5) Since name fields are not in a Cloned image, if you are going to use NAME: or PRINT: then you
must give the object a name explicitly using PUT.NAME:.

Hereis an example of an ODE program that will work with Clone.
| NCLUDE? TASK- CLONE_SUPPCORT JO CLONE_SUPPORT
OB. ARRAY MY- ARL
GOOD. CDE (-- sinple clonable program)
Cs. SP! (REQURED !'ITT)
10 NEW MY- ARL (only call NEW at run tine)
" Test Array” PUT. NAME: M- AR1l (since NFAs will be gone)
761 FILL: MY-ARL
PRI NT: My- AR1
FREE: My- AR1
(nowclone it)
CLONE GOOD. CDE
SAVE- | MAGE GOCD. CDE RAM GOCD. ODE
(nowin the CLI, enter)
RAM GOCD. ODE

Explanation of ODE Structures Diagram

Thisisavery technical discussion of how ODE isimplemented and is probably more detailed than
most people need to know.

A class structure contains information about how to create an object and how to implement its
methods.. Please refer to the accompanying diagram when reading this section. Thefirst field in the
class structure is the Size of an Object. When an object is instantiated, this much room is aloted or
allocated. The second field isthe Number of Methods that this class supports. This determines how
large the jJump table containing method addressesis. The next field, the Validation Code, is used to
distinguish valid classes from random memory and is used for error checking when binding. The next
field is the Superclass pointer.

When anew classis defined the following things occur. The new class first inherits the superclass
initial object size. Asnew instance variables are declared, thissizeisincreased. A jump tableis
alloted for the class that has enough entries for all of the methods declared using METHOD . The

superclass method pointers are copied from the superclass jump table so that the new class can inherit
those methods. When new methods are defined, the entry in the jump table is overwritten. Each
declared method has a specific index which determines its offset in any class jump table.

When an object isinstantiated, space is aloted based on the Size of Object field in the class. Thefirst
cell of the object is set with a pointer to the method jump table for the class. Then the first method in
that jump table, INIT: , is called which initializes the object.

When amessage is sent to an object, the object's address is first pushed onto the "current object stack™.
Then the appropriate method is looked up in the object’s classes jump table and executed. When
finished, the object is popped from the object stack. This alows nesting of object method calls.

When amethod is declared using METHOD a structure is created that has an index equal to the current
value of MI-NEXT. MI-NEXT isthen incremented. Thisisthe index for a specific method in each
class jump table. The methods are linked using the Previousfield so that the METHODS.OF word
can scan amethod list for aclass.

