Chapter 8
File 1/0O

This chapter describes the JForth words that provide a simple, complete interface to the AmigaDOS
fileroutines. A fileissimply acollection of bytes that can be stored on adisk or in memory. Any
kind of data can be stored in afile. The bytes may be ASCII characters asin a document or a
program's source code. They could also be data from an experiment or binary code for execution by
the computer.

Asyou might expect, support is provided to perform the standard file operations. These are:

1. Opening afilefor use and getting a"file pointer” that is used when referring to afile.

2. Using thefile-pointer to read the data, write new data and/or reposition yourself in thefile, seek.
3. Closing thefile, again using the identifying file-pointer, when finished.

Some additional tools have been provided to round out the stock supply of file utilities. These may not
be needed in atypical application. These involve the generation of NUL terminated file names which
Amiga DOS requires internally, and fast buffered 1/0O.

Note that the Amiga OS already provides interfaces to some types of Amiga system files, such asicons
(those that end in .info), libraries and others. Such files are not normally accessed with these functions,
but with the Amiga-supplied ones.

Before we get into too much detail, let's explore some of these toolsin atutorial.

File 1/0O Tutorial

When entering this tutorial be sure to enter it exactly as written, especially when reading files..
Otherwise you could overwrite memory causing a harmless but annoying crash.

Creating a Text File

Let's create anew file. We can store sometext in the file then read it back out. Rather than create a
file on floppy disk, let's make one on the RAM: disk. Enter:

VARI ABLE MYFI LE

NEW FOPEN RAM FI LE1 . S

MYFI LE !

Wejust created aNEW file called "FILEL" on the volume RAM:. The number that was returned by
FOPEN is apointer to a special structure that we can use to access that file. We don't have to worry
about what isin that structure. Just consider it as aunique identifier for that file. We can have
multiple files open and refer to each of them by their file pointer. We saved the file pointer in a
variable called MY FILE because we will need it later.

Itis possible that your RAM: disk was full which can happen if you are low on memory. If so, FOPEN
would have returned a ZERO for afile pointer. Itisimportant to check to make sure that the file
pointer is not ZERO before proceeding. That iswhy we used .S to show the pointer. If you got azero
from FOPEN, try again using a formatted disk in DF1:, with a filename of "DF1:FILE1".

Now let'swrite to the file. Enter:

MYFILE @ (get the file pointer)
" Inmportant Information" COUNT .S
FWRI TE .

File I/O 8-1

FWRITE expects afile pointer followed by an address and count. It writes the string to the file and
then returns the number of characters written. If thereis an error, it will return a-1.

If we are going to write more lines to the file, we should separate them with and "End Of Line"
character. EOL isaconstant equal to the character used to separate linesin afile. Onthe Amiga, this
isan ASCII Linefeed. If we write again to the file, the new datawill go right after the previous data.
Thisis because file 1/0O uses an imaginary cursor that pointsinto thefile. Thistype of 1/Ois called
"sequential 1/0" because bytes are read or written one after the other in sequence. Enter:

MYFILE @ EOL FEMT
FEMIT isahandy word that uses FWRITE to write asingle character to afile. We can now write
another line to thefile.

MYFILE @ " COST = 23" COUNT FWRITE .

MYFILE @ EOL FEMT

When we are finished with afile we should close it. Enter:

MYFI LE @ FCLOSE
We have now opened afile, written datato it, and closed it. We can see the result of our work by
entering in the CLI window:

TYPE RAM FI LE1

or in JForth:
TYPEFI LE RAM FI LE1

Reading a Text File

Now let's open that file, and read what we wrote. Enter:

FOPEN RAM FI LE1 .S

MYFI LE !
We don't need to say NEW because we are opening an existing file. Now let's read the first 8
characters from the file. Enter:

PAD 200 ERASE (clear PAD)

MYFILE @ PAD 8 FREAD .

PAD 8 TYPE
We should see the number 8 printed after the FREAD which is the number of charactersread. The
datawas stored at PAD which we saw using TYPE . Let's now read the rest of thefile. Reading afile

uses a cursor just like when writing. We are now positioned after the 8th character and can read from
that point. Enter:

MYFI LE @ PAD 100 FREAD .

Notice that the number printed was less than 100. The number reflects the actual number of bytes
read. Since we reached the end of the file, we got fewer bytes than we asked for. Thisis oneway to
tell when you reach the end of afile. We can look at our data by entering:

PAD 30 DUWP

Now let's close our file. Enter:
MYFI LE @ FCLCSE

JForth provides several tools that simplify reading text files. Theseinclude READLINE and
DOLINES which will be discussed |ater.

Using Binary Data Files

We can also use files to store numbers in the form of binary data. In fact, anything in memory, arrays,
structures, parts of the dictionary, whatever, can be written to afileusing FWRITE. Let's create an
array of numbers then storethem in afile. We should put a count of how many numbers there are at

-2 File /O

the beginning of the file so we know how to read it later. First let's make an array of datato use.
Enter:

CREATE MYDATA 123 , 2931, 7, 99712, 49 ,

VARI ABLE NUM | TEMS

5 NUM | TEMVS !

Now let's make afile to store this datain. Enter:

NEW FOPEN RAM BDATA .S
MYFI LE !

At the beginning of the file we should store the number of 4 byte data cells that will follow. Thiswill
help us later when we want to read the file. Enter:

MYFILE @ NUMITEMS 4 FWRITE .
This wrote the 4 bytes at the address NUM-ITEMS to the beginning of the file. In other words, we just
wrote the contents of the variable NUM-ITEMSto the file. Now let's write the data.

MYFILE @ MYDATA NUMITEMS @CELLS .S
FWRI TE .

Each number in MYDATA occupies 4 bytes or 1 cell. By calling CELLS we cal culate how many bytes
the table of numbers occupies.

Rather than close the file and reopen it, let's just reposition ourselves to the beginning and start
reading. Theword FSEEK will move our cursor to anyplacein thefile. We can move to alocation
relative to our current position, or relative to the beginning or end. Let's move to the beginning of the
file.

MYFILE @ 0 OFFSET_BEG NNI NG FSEEK .
The number printed was our old position in thefile. (Y ou can move zero bytes relative to your current
position to find out where you are!) We can now read the number of dataitemsin the file. Enter:

0 NUM | TEMB !

NUM | TEMS ?

MYFILE @ NUM | TEMS 4 FREAD .

NUM | TEMS ?

NUM-ITEMS now contains the number of dataitemsin thefile. Let’'s read the data. Enter:
MYFILE @ PAD NUM | TEMS @ CELLS FREAD .
PAD @. (print 123)
PAD 8 + @. (print 7))

The data is now stored on the PAD.

Sometimes, adatafile can be so big that we don't want to load the whole thing into memory. You can
write aword that will read randomly from agiven positionin afile. Thisword will check for errors
when seeking. FSEEK will return a-1 if you have an error. A common error istryin to go outside the
bounds of thefile. Y ou may want to enter this examplein afile for future use. Enter:

GRABDATA (itenm# -- item, read an item)
\ Calcul ate offset, skipping count at begi nning.
CELLS CELL+

\ Position cursor in file.
MYFI LE @ SWAP OFFSET_BEG NNI NG FSEEK
0< ABORT" File Seek Failed!"
\ Read the nunber.
MYFI LE @ PAD 4 FREAD
4 = NOT ABORT" File Read Failed!"
PAD @

File I/O 8-3

0 GRABDATA . (print 123 , the first itemis # 0)
3 GRABDATA . (print 99712)
70 GRABDATA . (should report failure)
Now close thefile. Enter:
MYFI LE @ FCLCSE

This demonstrated the use of asimple binary datafile. Very complex files, like the IFF files can also
be accessed with these techniques. See the JIFF:IFF_SUPPORT or JU:SHOWHUNKS for more

examples.

File I/0O Reference

Opening Files

Prior to reading from or writing to afile, it must be 'opened’. JForth provides four words concerned
with opening files.

FI LEWORD (<fil ename> -- $addr , parse file name frominput)

If you have afile that has spacesin the name, then you cannot use WORD to get the filename because
it will only get the first word up to the space. FILEWORD will check to seeif the first letter of a
filenameisa", if soit will parse up to the next " for the end of the name. This name can then be
passed to words that use $FOPEN.
TESTF (--) FILEWORD COUNT TYPE ;
TESTF nydat a
TESTF "nane with spaces” (this will work!)

FOPEN (<filename> -- file-pointer | false , opens file)

This reads the filename from the input stream using FILEWORD, opens the file and returns a pointer
to afile control structure.

FOPEN DF1: DATAFI LE
If you do not specify a pathname, Amiga DOS will default to the current directory as set by the CD
command.

OFOPEN (Onane -- file-pointer | false , opens file)
In this case the filename is a NUL terminated string passed on the stack.
0" DFO: THI SFI LE" OFOPEN

$FOPEN ($name -- file-pointer | false , opens file)
This accepts a standard Forth string, with a count byte. Y ou should use FILEWORD instead of word if
you want to get afilename from input.
" DFO: THI SFI LE* $FOPEN

If the file could not be opened, these words return false.

Files are normally opened as existing, read/write. This means that the file specified must exist, its
contents will be preserved across the open, and both read and write operations are allowed.

Another word, NEW (--), may precede the 'FOPEN' word to create a new file, or clear the contents of
an existing file.

The 'FOPEN' words access a variable called FILEMODE to determine the desired mode for opening.

NEW places the value MODE_NEWFILE there, OLD replacesit with MODE_OLDFILE. Note that,
at the end of every 'FOPEN' operation, the mode will be reset to OLD .

8-4 File I/O

NOTE: Do NOT execute NEW unlessit isimmediately followed by the open’ operation. It's
UNNERVING to clear awanted file on open, just because you executed NEW and forgot about it!

It isimportant to check the results of afile being opened because errors can easily occur. Open errors
are typicaly due to the file not being found because the name is incorrect or you are in the wrong
directory.

OPENFI LE (<nane> -- , open a file)
FOPEN (gets name frominput stream)
DUP \ save the file-pointer in a variable
IF MYFILE !
ELSE CR ." File could not be opened!" QU T
THEN

Reading and Writing to files.

The words supplied in JForth are a high-level interface to the AmigaDOS calls READ, WRITE, and
SEEK. One minor differencein their useisthat all addresses passed as parameters are relative
addresses. They are converted to absolute (required by Amiga calls) within the function.

Each function requires a 'file-pointer', which will have been acquired via FOPEN , OFOPEN or
$FOPEN . File pointers are not considered addresses and are used just as AmigaDOS returns them;
they are NEVER converted to relative.

Their names and stack diagrams are as follows:

FEMT (file-pointer char -- , emts character to file)
Thiswill abort if an error occurs.

FKEY (file-pointer -- char , gets character fromfile)
Thiswill abort if an error occurs. It is not recommended that this be used in commercial aplications
because it does not handles gracefully. But it is handy.

FREAD (file-pointer addr cnt -- #read | -1)

The FREAD and FWRITE functions are straightforward in their operation, operating on the
specified memory and file (at its current address). Each return the number of bytes processed, or -1
if an error occurred.

FWRITE (file-pointer addr cnt -- #witten | -1)

FSEEK (file-pointer filepos node -- prevpos | -1)

The FSEEK 'mode’ parameter equates directly to the AmigaDOS declared parameters
OFFSET_BEGINNING, OFFSET_CURRENT, and OFFSET_END. For example, to seek to the
end-of-file minus 5 bytes:

MYFILE @ -5 OFFSET_END FSEEK .

These 5 callswill also set auser variable, FERROR, if appropriate. (If you want to check FERROR,
do so immediately after the function returns. It will be reset by the next file operation.)

Following are various examples of reading from and writing to afile after it has been opened and the
file-pointer stored in aVARIABLE called MYFILE.

Change the current location to the beginning of thefile:
MYFILE @ 0O OFFSET_BEG NNING FSEEK (-- ret-code)

Read 100 bytes from current position, place them at PAD:
MYFILE @ PAD 100 FREAD (-- ret-code)

File I/O 8-5

Write 100 bytes from PAD to the file at its current location:
MYFILE @ PAD 100 FM\RITE (-- ret-code)

Closing Files.
The normal method of closing afile opened under JForth is:

FCLOSE (file-pointer -- , return file resources to Am gaDOS)

A norma program then, will use FOPEN when it starts, and FCLOSE at its completion. In
development environments, however, applications often will not finish as an error condition may
causeitto QUIT. In JForth, you may optionally mark your file to be automatically closed in this
event by executing MARKFCLOSE on a duplicate of the just-opened file-pointer. If your

application successfully completes, you should UNMARKFCLOSE your file(s), so that they are not
closed multiple times.

MARKFCLOSE (file-pointer -- , mark file to auto-close at quit)

UNVARKFCLOSE (file-pointer -- , renpve from'auto-close' stack)
Example: illustrates FOPEN, MARK and UNMARKFCLOSE and FCLOSE

EXAMPLE (-- , parses a filename fromthe input stream)

FOPEN (-- file OR false) ?dup
I F dup MARKFCLCSE (file --)
\ auto-close it at QUIT.

MYFI LE ! (--)

\ save it in ny variable
Do- My- Thi ng (--)

\ do file processing, whatever it is
MYFI LE @ (file --)

\ fetch the file pointer
dup UNMARKFCLOSE (file --)

\ renove fromthe auto-close stack
FCLGCSE (--)

\ and close it!

ELSE cr ." File could not be opened!"™ QU T
THEN

Building AmigaDOS Filenames.

Three words help you build null-terminated strings for AmigaDOS, but are not normally needed;
FOPEN can usually be used to specify afile. These are handy to modify filenames algorithmically and
resubmit them to AmigaDOS (via the OFOPEN word). They are:

DOSO (-- addr , returns the address of the NUL-string buffer)
>DOS (addr cnt -- , place string in DOSO, NUL term nated)

+DOS (addr cnt -- , append this string to one already at DOSO)

Note that >DOS and +DOS maintain a count byte usable by the JForth string words. For example, the
contents of DOSO can be typed by:

DOSO 1- count type

Here is an example of using these words to build afile pathname.
FOPEN. DATA (<nane> -- , append suffix and open)

8-6 File /O

FI LEWORD COUNT >DOS
. DATA" COUNT +DOS
DOsSO OFGPEN

FOPEN. DATA EXPT1 (open "EXPT1. DATA")

Sequential Virtual File Utilities

Several words provided allow easy use of a 1024 byte virtual buffer areafor file words designed to
sequentia single-character or cell-based transfers. Using these words, a program may realize a
significant speed improvement for certain types of file 1/0O.

An application, at its start, may open afile-virtua buffer and store the resultant addressin avariable.
The buffer may be used by passing the address of the variable (not the buffer) as an argument to
certain virtual-calls.

Also, some JForth-provided functions (such as READLINE) are only accessible through this scheme.

Those words dealing with virtual buffer management include:

OPENFV (var-addr -- buffer-addr)
Allocate a 1K buffer, and set the variable to its address. Even though the buffer addressis not
normally needed by applications, it isreturned. If azerois returned, an error occured.
CLOSEFVREAD (var-addr --)
Deallocate the buffer being pointed to by VAR. This buffer has only been read from. Clearsthe
variable.
CLOSEFVWRI TE (fil e-pointer var-addr --)
Flush any |eftover data to the file, deallocate the buffer and clear the variable. (This buffer may have
only been used for writing).
F, (file var n1 --)
Send 'n1' (32 bits) to the next available cell in FILE viathe virtual buffer stored in VAR.

READLINE (file var addr-addr maxcnt -- addr cnt | addr -1)
Read FILE viathe buffer stored in VAR, place at ADDR, do not exceed MAXCNT characters.
Returns 0 if an empty line, -1 if end-of-file.

TEMPF, (nl--)
Same as 'F,' but uses TEMPFILE and TEMPBUFF.

As an example, observe this simple word which opens the file whose name follows in the input stream,
then types each line to the screen until the end of file. (Note: TEMPFILE & TEMPBUFF are user
variables that are pre-defined in JForth for such uses.)

LISTFILE (-- , eats nane)

\ types inputted FILENAME to consol e
FOPEN - dup
IF TEMPFILE ! \ save file pointer

\ allocate virtual buffer
TEMPBUFF OPENFV (addr --)
drop

\ tempbuff inited by OpenFV, don't need addr
BEGA N

File I/O 8-7

TEMPFI LE @ TEMPBUFF
HERE 1000 READLI NE
DUP 0 < 0=
(addr #read true-if-not-eof --)
VWHI LE CR TYPE
REPEAT 2DROP
TEMPBUFF CLOSEFVREAD \ deal | ocate the buffer

TEMPFI LE @ FCLOSE \
ELSE cr ." Can't open " DOSO 1- count type quit
THEN cr

DOLINES - Easy Text File Processing

The DOLINES system provides a smple way to process text fileson aline by linebasis. You can set
adeferred word that will get called for each line of the file. It will be passed the line asastring. You
can then do whatever you want with that string. Here is an example of a program that types afile to
the screen.

First define aword that will process each line asit is read.
| NCLUDE? DOLI NES JU: DOLI NES

SHOMINE ($line -- , type it with line nunber)
CR DL-LINENUM @5 . R
SPACE $TYPE ?PAUSE
DL-LINENUM istheline number that is maintained by DOLINES. Now write aword that will set the
vector and call DOLINES.

SHOWFI LE (<filename> -- |, print file to screen)
" SHOMNINE I'S DOLINE (set deferred word)
DOLI NES

SHOWFI LE JU: BSORT
SHOWFI LE JU: ANSI

Once the vector DOLINE is set, you can call DOLINES which will take a filename from the input
stream, open the file, and pass each line to DOLINE.

$DOLINES ($filenane --)
Same as DOLINES but takes name on stack as string.
DL-LINENUM (-- addr , variable containing current |ine nunber)

DL. CLOSE.FILE (-- , close the doline file)
Y ou should call this from the word that you set DOLINE.ERROR to.

DOLINE ($LINE -- , do sonething!?!)

Thisisadeferred word that the user can set to anything they want as long as it has the same stack
diagram.

-8 File /O

DOLINES (<filename> -- , open and process file)

DOLI NE. ERROR (--)

Deferred word that is called if an error is encountered while processing the file. See
DL.CLOSE.FILE.

File I/O

